Test Drive | Page 45

32 BIOLOGÍA principalmente como formas de almacenamiento de energía y las enzimas los degradan fácilmente, con lo cual se liberan los monómeros de glucosa para ser degradados aún más. Por el contrario, la celulosa es importante como una de las principales macromolóculas estructurales de las paredes celulares de casi todas las plantas y no es fácil degradarla a sus monosacáridos constituyentes. Los organismos que subsisten alimentándose de madera o pasto tienen esa capacidad porque en sus aparatos digestivos hay microorganismos capaces de digerir la celulosa. Si los seres humanos pudiéramos tener una relación simbiótica de ese tipo con los microorganismos digestores de celulosa, la crisis mundial de escasez de alimentos se aliviaría considerablemente, pues podríamos salir a pastar. La celulosa difiere del glucógeno y del almidón en que forma largas cadenas no ramificadas que dan al polímero tenacidad y rigidez. Aparte, la constitución genética de la celulosa y la naturaleza de sus enlaces producen largas cadenas que se unen en ciertos puntos para integrar una fuerte estructura fibrosa, algo así como los cables que se usan para tender puentes y que prestan resistencia tensional a la estructura. Los almidones contienen unidades de cadena recta y de cadena ramificada, mientras que el glucógeno tiene una mayor abundancia de ramificaciones. La ramificación dentro del glucógeno y del almidón confiere cierta solubilidad a estas moléculas y, además, produce una mayor vulnerabilidad al ataque enzimático. 3.3 mecanismos que tienden a incrementar la concentración de cierto constituyente de los líquidos corporales y los que tienden a reducirla. Los niveles de glucógeno son controlados por la interacción de hormonas y enzimas. La producción de glucógeno aumenta al elevarse la concentración de glucosa-6-fosfato, un precursor del glucógeno, lo cual estimula a la sintasa del glucógeno e inhibe a la fosforilasa del glucógeno. La insulina activa la sintasa del glucógeno y, de ese modo, fomenta la producción del polisacárido. A la insulina se opone el glucagón, el cual, junto con la adrenalina o epineirina, promueve la degradación del glucógeno a glucosa. De este modo, el mantenimiento del equilibrio del azúcar en la sangre se logra con la cuidadosa producción de hormonas: algunas que favorecen el almacenamiento de glucosa en forma de glucógeno cuando las concentraciones de monosacáridos son altas; otras que inducen la degradación del glucógeno cuando se abaten los niveles de glucosa en la sangre. 3.5 Una vez determinada la estructura primaria, es decir, el ordenamiento lineal de los aminoácidos que constituyen la proteína, las estructuras superiores son adoptadas en forma automática. Estos cambios, consistentes en alteraciones de la configuración tridimensional de la proteína, se deben a interacciones electrostáticas (por cargas eléctricas) dentro de la propia molécula o al agrupamiento de regiones hidrofóbicas o hidrofílicas. Además, la formación de puentes de hidrógeno entre regiones adyacentes e incluso inicialmente distantes de la cadena proteínica contribuye a generar las curvaturas, los dobleces, las láminas y otras configuraciones asociadas con los niveles estructurales superiores. Tiene particular importancia, en la asociación de polipéptidos individuales para generar la estructura cuaternaria, la formación de enlaces S—S a partir de los grupos sulfhidrilo (—SH) presentes en algunas moléculas polipeptídicas. Los enlaces S—S existen, por ejemplo, como enlaces entre las dos cadenas polipeptídicas de la molécula de insulina. ¿De qué está formada la quitina? La quitina es uno de los principales constituyentes del exoesqueleto de los insectos y otros artrópodos, aunque también existe entre los hongos. Se trata de un resistente polímero, impermeable al agua, formado por largas cadenas de un derivado de la glucosa al que se incorporó un grupo nitrogenado. Aunque en sentido estricto no es un polisacárido, la quitina puede considerarse un polisacárido modificado. La modificación consiste en la sustitución del grupo hidroxilo (—OH) del segundo átomo de carbono de cada glucosa por un grupo 3.4 Describa la interacción de hormonas y enzimas en el control de las concentraciones de glucógeno. El descubrimiento y la investigación del glucógeno, realizados por Claude Bernard, fisiólogo francés del siglo pasado, condujeron al conocimiento de la función que desempeñan los procesos antagonistas para el mantenimiento de un medio interno constante en los seres vivos. Este concepto, denominado posteriormente homeostasis, fue clave para descubrir que el funcionamiento, tanto en la salud como en la enfermedad, consiste en un equilibrio entre los La información genética almacenada en el DNA incluye un código para la estructura primaria de cada proteína. ¿De qué dependen las importantes estructuras secundaria, terciaria y cuaternaria de las proteínas? 3.6 ¿En qué se asemejan y en qué se diferencian las proteínas? Todas las proteínas comparten ciertas propiedades. Son conjuntos de aminoácidos unidos entre sí por medio de enlaces peptídicos, formando así largas cadenas llamadas polipéptidos. Todas sufren alteraciones morfológicas en sus cadenas polipeptídicas, de lo cual resulta la estructura secundaria, y otras modificaciones de su configuración a las que se deben el superplegamiento o los complejos dobleces de la estructura terciaria. Es factible la unión de