Test Drive | Page 360

ECOLOGÍA oportunidades a la siguiente generación de plantas y animales. La sucesión prosigue hasta que se alcanza una comunidad climax, es decir, una comunidad perfectamente adaptada al ambiente y que ya no sufre cambios importantes por largo tiempo. 26.4 BIOMASA Y DISPERSIÓN DE LAS ESPECIES Por biomasa se entiende el peso total de los organismos que viven en un ecosistema. Este término suele aplicarse a niveles tróficos determinados con el fin de averiguar lo que sucede durante el paso de energía a través de una cadena trófica. Dado que hay pérdida continua de biomasa conforme se avanza en la cadena trófica, cabe considerar que la comunidad es una pirámide (Fig. 26.5) en términos de biomasa. En las pirámides tróficas (de energía) se observa una amplia base productora coronada por poblaciones de consumidores cada vez más pequeñas. El consumidor final forma el ápice de la pirámide. La capacidad de carga de un hábitat es el límite superior de su capacidad para sostener la vida. En general, este parámetro se expresa como el número de individuos que puede sobrevivir en una comunidad estable. Por cuanto se refiere a los animales, la capacidad de carga suele ser función de los recursos alimenticios disponibles; en el caso de las plantas depende de los nutrientes minerales, las concentraciones de CO2 o la disponibilidad de luz solar. Cuando la capacidad de carga es relativamente alta las densidades de población tienden a ser grandes. Pero si la capacidad es baja, las poblaciones se dispersan. Los bosques tropicales lluviosos se caracterizan por sus altas capacidades de carga para muchas especies de plantas y animales. La densidad de población es una peculiaridad cuantitativa de los ecosistemas; su aspecto cualitativo es la dispersión de los individuos en el espacio. Eugene P. Odum, de la University of Georgia, cita tres tipos generales de distribución: 1. Distribución aleatoria, en la que los individuos se dispersan por todo el hábitat sin que pueda observarse un patrón determinado. 2. Distribución uniforme, en la cual se observan patrones regulares de dispersión; por ejemplo, las flores que cubren un campo. 3. Aglomeración, en la que se observan agrupaciones irregulares; por ejemplo, las parvadas de especies silvestres. Los patrones o esquemas de dispersión dependen de los grados de socialización de cada población, de la topografía y la distribución de la vida vegetal, de las interacciones con otras especies, de la disponibilidad de recursos y así sucesivamente. Los factores de dispersión tienden a separar a los miembros de las poblaciones, 347 mientras que los factores de cohesión hacen que los individuos se reúnan. Para cuando empezó la Primera Guerra Mundial, los ecólogos ya habían demostrado que en virtud de la competencia no es posible que dos especies ocupen por mucho tiempo un mismo nicho; esta es la regla del nicho. Durante la década de 1930, el biólogo soviético G. F. Gause realizó una serie de complejos experimentos con Parameaum y eso le permitió generalizar la regla del nicho, pues demostró que la competencia por un recurso escaso hace que una especie domine a la otra. Este principio de la exclusión competitiva o principio de Gause ha sido confirmado y reconfirmado mediante diversos experimentos de laboratorio y recalca la participación de la competencia en la determinación de la supervivencia de las especies dentro del ecosistema. Con todo, en la década de 1980 los ecólogos se percataron de que en la naturaleza es posible que varias especies ocupen el mismo nicho. Por tanto, aunque se acepta la existencia de la exclusión competitiva se está evaluando su participación en la naturaleza. 26.5 ALTERACIÓN DE LA ESTABILIDAD DE UN ECOSISTEMA Los ecosistemas poseen elasticidad y resistencia a una variedad de perturbaciones, lo cual sugiere la existencia de mecanismos homeostáticos de control. Los cambios que ocurren lentamente se traducen en una serie de sucesiones tendientes a la relativa estabilidad a largo plazo de la comunidad clímax. Aunque muchas perturbaciones relativamente graves son soportables, las grandes catástrofes ambientales pueden sumir en el caos hasta las comunidades clímax estables. Las comunidades más jóvenes, que son mucho más activas y productivas que los sistemas más maduros, tienen menor capacidad para resistir las afrentas ambientales. SIMPLIFICACIÓN Y ENCOGIMIENTO DE NICHOS Hace tiempo se pensaba que una gran diversidad de especies y un patrón de interacciones complejo e intrincado entre las poblaciones de una comunidad conferían mayor estabilidad al ecosistema. Sin embargo, a esta noción tradicional se oponen las simulaciones computadorizadas de modelos de ecosistemas hipotéticos y la gran fragilidad a las perturbaciones físicas observada en los bosques tropicales lluviosos a pesar de su extraordinaria riqueza en especies. Los ecosistemas más sencillos y con menos ramificaciones en sus redes funcionales (cadenas tróficas y ciclos de nutrientes) exhiben mayor degradación al sufrir ofensas ambientales, pero se recuperan con bastante rapidez y adoptan nuevas estructuras estables. Los ecosistemas complejos no son afectados