RocketSTEM Issue #6 - March 2014 | Page 12

Engineers worked meticulously to implant the James Webb Space Telescope’s Mid-Infrared Instrument into the ISIM, or Integrated Science Instrument Module, in the cleanroom at NASA’s Goddard Space Flight Center in Greenbelt, Md. Photo: NASA/Chris Gunn the European Spaceport located near Kourou, French Guiana, in 2018. The program has not been without its own share of problems and was nearly cancelled by the United States House of Representatives’ appropriations committee on Commerce, Justice, and Science in 2011, citing ”billions of dollars over budget and plagued by poor management” Size comparison of Hubble and Webb primary mirrors. 10 10 Image: NASA as the reasoning behind killing the program. Congress, however, reversed the cancellation plans and instead capped additional funding to complete the project at $8 billion – four times more expensive than originally proposed, with a new launch date at least seven years later than originally planned. “Having the final mirror segments at Goddard is an exciting program milestone. It’s the culmination of more than a decade of advanced optics manufacturing and testing work by teams of extremely dedicated engineers, technicians and scientists,” said Eric Smith, acting program director and program scientist for the Webb Telescope at NASA Headquarters in Washington. “These mirrors are ready to meet up with the structure that will hold them incredibly stable, forming Webb’s 6.5-meter-diameter primary mirror – the largest space telescope ever built.” The flight-ready mirrors, built by Ball Aerospace and Technologies Corporation in Boulder, Colo., began arriving at Goddard in the fall of 2012. The hexagon-shape of the mirrors, with 18 mirror segments making up one giant primary mirror, was no accident either – it was an intentional design because there is no rocket in the world large enough to loft a 6.5-meter mirror into space, www.RocketSTEM.org