RocketSTEM Issue #6 - March 2014 | Page 13

at least not in one piece. The 18 mirror segments can be folded up to fit into the launch vehicle and then unfold after launch, and once in space the segments will work together as a single large mirror. Putting Webb into position for its observations is one thing, but getting the giant segmented mirror to focus on galaxies millions, even billions, of lightyears away is another challenge all together. In order to ensure Webb achieves a single perfect focus, engineers will use six tiny mechanical motors, or actuators, attached to the back of each mirror piece to capture the images they expect Webb to produce. “Aligning the primary mirror segments as though they are a single large mirror means each mirror is aligned to 1/10,000th the thickness of a human its shape at those cryogenic temperatures and is a good conductor of electricity and heat. Gold coats the finished mirrors and is used to improve the mirror’s reflection of infrared light. ITT (formerly Kodak) will combine the 18 segments into one big mirror at Goddard once the mirror backing structure, built by ATK in their facility in Salt Lake City, Utah, is delivered. ITT will mount the mirror segments onto their proper place on the backing structure, which holds 12 segments in the middle part of the mirror and has two wings with three segments each (it’s these wings that fold back so that the full mirror will fit into the payload fairing atop the Ariane-5 rocket). Although the mirrors are not installed onto the body of the telescope yet, work to install Webb’s four fragile science instruments began some time “ Aligning the primary mirror segments as though they are a single large mirror means each mirror is aligned to 1/10,000th the thickness of a human hair.” – Lee Feinberg A full-scale JWST sunshield membrane is deployed on the membrane test fixture ready for a precise measurement of its three dimensional shape. Image: Northrop Grumman Aerospace Systems hair,” said Lee Feinberg, Webb Optical Telescope Element Manager at NASA’s Goddard Space Flight Center. “What’s even more amazing is that the engineers and scientists working on the Webb telescope literally had to invent how to do this.” Another problem with “traditional” telescope mirrors is the fact that they are heavy. If Webb’s mirror was made same as the Hubble, then it simply could not be launched. To get around this problem, the team at Northrop Grumman (the company that is leading the effort to build Webb) decided to make Webb’s mirrors from Beryllium, which is a very strong lightweight metal. In order for the telescope’s instruments to function properly, the observatory also needs to be kept very cold, -400 degrees Fahrenheit cold, and Beryllium holds ago. The telescope’s most sophisticated and technically challenging instrument – the MidInfrared Instrument (MIRI) – is now integrated into a large component of the telescope known as the science instrument payload, or Integrated Science Instrument Module (ISIM). The install took four hours to complete because the delicate operation required a surgical installation for precision and accuracy – MIRI had to be positioned to a tolerance of 25 microns, or one one-thousandth of an inch – which is less than the width of a human hair. The ISIM itself acts like a chassis in a car to provide support and house all four of Webb’s science instruments - it’s the heart that enables the whole mission. 11 www.RocketSTEM.org 11