RocketSTEM Issue #6 - March 2014 | Page 11

Meet NASA’s James Webb Space Telescope Successor to the Hubble – Launch Date: 2018 By Mike Killian In a 1.3 million cubic-foot cleanroom at NASA’s Goddard Spaceflight Center in Greenbelt, Md., 18 gold-coated primary mirror segments await installation on NASA’s James Webb Space Telescope. Those mirrors and the telescope’s four science instruments just steps away, will become the most powerful space telescope ever built. “The Hubble Space Telescope has already rewritten the science books. Going from Hubble to the James Webb Space Telescope is like going from a biplane to the jet engine,” said Maryland Senator and Chairwoman of the Senate Appropriations Committee Barbara Mikulski at a news conference held at Goddard on Feb. 3. “The James Webb Space Telescope will keep us in the lead for astronomy for decades to come, spurring the innovation and technology that keep America’s economy rolling.” With most of the major hardware now under one roof, assembly of the massive space-based observatory is expected to begin as soon as the telescope’s structure arrives at Goddard, with assembly expected to be completed in 2016. This image shows the four types of mirrors on the Webb telescope: a primary mirror segment, the secondary mirror, tertiary mirror and the fine steering mirror. On the bottom row are the three different mirror segments seen from the rear to illustrate the honeycomb structure that makes the mirrors both very light and mechanically stiff. Image NASA/Ball Aerospace/Tinsley An artist’s impression of the James Webb Space Telescope. Image: Northrop Grumman Once complete, Webb – with its 69.5 ft x 46.5 ft instruments-protecting sunshield deployed – will be the size of a Boeing 737 airplane. Hubble, in comparison, is about the size of a large tractortrailer truck or bus. Webb’s 6.5-meter diameter primary mirror will also be bigger, much bigger. The telescope will have nearly seven times more light collecting area than Hubble, allowing for unprecedented infrared observations of distant objects from the dawn of the universe some 14 billion years ago. Its mirror and instruments will capture images of the universe and break down the spectra of incoming light to analyze the properties of galaxies, stars, and the atmospheres of planets beyond our Solar System. “The recent completion of the critical design review for Webb, and the delivery of all its instruments to Goddard, mark significant progress for this mission,” said NASA Administrator Charles Bolden. “The design, build, delivery and testing of these components took meticulous planning and action here at Goddard and with teams across the country, as well as with our international partners. It’s very exciting to see it all coming together.” A joint project between NASA, the European Space Agency (ESA), and the Canadian Space Agency (CSA), Webb will have been in planning, design , and development for over 20 years when it is launched atop an Ariane-5 rocket from Arianespace’s ELA-3 launch complex at 09 www.RocketSTEM.org 09