MEDICINA FAMILIAR MEDICINA FAMILIAR | Page 35

Pérez Durillo FT, et al- SÍNDROME METABÓLICO. ASOCIACIÓN ENTRE GLP-1 Y FACTORES DE RIESGO CARDIOVASCULAR
contraction in adult rat cardiac myocytes. Circ Res 2001; 89: 445-52.
10. Yamamoto H, Lee CE, Marcus JN, Williams TD, Overton JM, Lopez ME et al. Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons. J Clin Invest 2002; 110: 43-52.
11. Green BD, Hand KV, Dougan JE, McDonnell BM, Cassidy RS, Grieve DJ. GLP-1 and related peptides cause concentration dependent relaxation of rat aorta through a pathway involving KATP and cAMP. Arch Biochem Biophys 2008; 478: 136-42.
12. Yu M, Moreno C, Hoagland KM. Antihypertensive effect of glucagon-like peptide 1 in Dahl salt-sensitive rats. J Hypertens 2003; 21: 1125-35.
13. Gutzwiller JP, Tschopp S, Bock A et al. Glucagon-like peptide 1 induces natriuresis in healthy subjects and in insulinresistant obese men, J Clin Endocrinol Metab 2004; 89:3055-61.
14. Bose AK, Mocanu MM, Mensah KN, et al. Glucagon-like peptide-1 protects schemic and reperfused myocardium via PI3Kinase and p42 / p44 MAPK signaling pathways. Diabetes. 2004; 53( suppl 2): A1.
15. Holst JJ. Glucagon-like peptide-1: physiology and therapeutic potential. Curr Opin Endocrinol Diabetes 2005; 12:56-62.
16. Nikolaidis LA, Mankad S, Sokos GG, Miske G, Shah A, Elahi D, et al. Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation. 2004; 109: 962-65.
17. Piotrowski K, Becker M, Zugwurst J, Biller-Friedmann I et al.: Circulating concentrations of GLP-1 are associated with coronary atherosclerosis in humans. Cardiovasc Diabetol 2013; 12( 1): 117-21.
18. Yamaoka-Tojo M, Tojo T, Takahira N, Matsunaga A, Aoyama N, et al. Elevated circulating levels of an incretin hormone, glucagon-like peptide-1, are associated with metabolic components in high-risk patients with cardiovascular disease. Cardiovasc Diabetol 2010; 9: 17-25
19. Executive Summary of the Third Report of the National Cholesterol Education Program( NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults( Adult Treatment Panel III). JAMA. 2001; 285:2486 – 2497.
20. Castilla ML, Jiménez CP, Lama C, Muñoz J, Obando y de la Corte J, Rabat JM. Rebollo I, Sagrista M. Consejo Dietético en Atención Primaria. Consejería de Salud. Junta de Andalucía. Sevilla, 2005.
21. Baggio LI, Drucker DJ. Biology of Incretins: GLP-1 and GIP. Gastroenterology 2007; 132: 2131-57.
22. Conroy RM, Pyöräla K, Fitzgerald AP, Sans S, Menotti A, De Backer G et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J 2003; 24:987-1003
23. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Teacher DF, Turner RC. Homeostasis model assessment: insulin resistance and B cell function from fasting plasma glucose and insulin resistance concentration in man. Diabetologia 1985; 28: 412-19.
24. De Portugal J. La obesidad visceral, entidad metabólica con riesgo vascular. An Med Intern 1991; 8: 265-268.
25. Pradhan AD. Sex differences in the metabolic syndrome: implications for cardiovascular healthin women. Clin Chem. 2014; 60( 1): 44-52.
26. Esposito K, Kastorini CM, Panagiotakos DB, Giugliano D. Mediterranean diet and metabolic syndrome: an updated systematic review. Rev Endocr Metab Disord. 2013; 14( 3): 255-63.
27. Steffen LM, Van Horn L, Daviglus ML, Zhou X, Reis JP, Loria CM, Jacobs DR, Duffey KJ. A modified Mediterranean diet score is associated with a lower risk of incident metabolic syndrome over 25 years among young adults: the CARDIA( Coronary Artery Risk Development in Young Adults) study. Br J Nutr. 2014; 19: 1-8.
28. Peterson LR, Soto PF, Herrero P, Schechtman KB, Dence C, Gropler RJ. Sex differences in myocardial oxygen and glucose metabolism. J Nucl Cardiol. 2007; 14( 4): 573-81.
29. Blaak E. Sex differences in the control of glucose homeostasis. Curr Opin Clin Nutr Metab Care. 2008; 11( 4): 500-04.
30. Soeters MR, Sauerwein HP, Groener JE, Aerts JM, Ackermans MT, Glatz JF, Fliers E, Serlie MJ. Gender-related differences in the metabolic response to fasting. J Clin Endocrinol Metab 2007; 92:3646-52.
31. Sicree RA, Zimmet PZ, Dunstan DW, Cameron AJ, Welborn TA, Shaw JE. Differences in height explain gender differences in the response to the oral glucose tolerance test: the AusDiab study. Diabet Med 2008; 25:296-30.
32. Van Heyningen C. Lipid metabolism: lipoproteins in the metabolic syndrome and subclass sex and age differences. Curr Opin Lipidol. 2005; 16( 1): 119-20.
33. Freedman DS, Otvos JD, Jeyaraja EJ, Shalaurova I, Cupples LA, Parise H, D’ Agostino RB, Wilson PW, Schaefer EJ. Sex and age differences in lipoprotein subclasses measured by NMR spectroscopy: the Framingham study. Clin Chem. 2004; 50:1189-00.
34. Vilsbøll T, Krarup T, Deacon CF, Madsbad S, Holst JJ. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes. 2001; 50( 3): 609-13.
35. Paniagua JA, de la Sacristana AG, Sánchez E, Romero I, Vidal-Puig A, Berral FJ, Escribano A, Moyano MJ, Peréz-Martinez P, López-Miranda J, Pérez-Jiménez F. A MUFA rich diet improves posprandial glucose, lipid and GLP-1 responses in insulin resistant subjects. J. Am. Coll. Nutr. 2007; 26: 434-44.
36. Mannucci E, Pala L, Ciani S, Bardini G, Pezzatini A, Sposato I, Cremasco F, Ognibene A, Rotella CM. Hyperglycaemia increases dipeptidyl peptidase IV activity
in diabetes mellitus. Diabetologia. 2005; 48( 6): 1168-72.
237 35