MACHER 18 MACHER 18 | Page 36

Instead, from the very beginning, SpaceX designed its Falcon rockets with commonality in mind. Both of Falcon 9’s stages are powered by RP1 and liquid oxygen, so only one type of engine is required. Both are the same diameter and are constructed from the same aluminum-lithium alloy, reducing the amount of tooling and the number of processes and resulting in what Musk calls “huge cost savings.” No choice was more critical than the Merlin rocket engines used to power Falcon 9. SpaceX propulsion chief Tom Mueller and his team selected an engine type called the pintle that was pioneered by Mueller’s former employer, TRW, which used it for the descent stage of the Apollo lunar module. Unlike most rocket engines, in which droplets of fuel and oxidizer are sprayed into the combustion chamber through an injector plate resembling a shower head, the pintle uses a needle-like injector that’s more like the nozzle on a garden hose. It’s not only less expensive to make, Mueller says, but it is also less susceptible to combustion instability, a runaway buildup of energy within the thrust chamber that has vexed engineers since the dawn of the Space Age (it added years and many millions of dollars to development of the giant F-1 engines for the Saturn V moon rocket, for example). Combustion instability can make an engine undergo what veterans dryly call an RUD, for Rapid Unscheduled Disassembly; civilians would call it blowing up. Even the Merlin had a couple of RUDs in the early days of development. “There are a thousand things that can happen when you go to light a rocket engine,” Mueller says, “and only one of them is good.” That, of course, was hardly news by the time SpaceX got started; studies had shown that over the previous two decades, the vast majority of rocket failures were due to engine malfunctions. And so, before attempting the multi- engine Falcon 9, Musk began with the smaller and less expensive Falcon 1, which uses a single Merlin engine in its first stage. Test launches of this 70-foot rocket, beginning in 2006, were SpaceX’s baptism by fire. Only after three failed attempts did the Falcon 1 become the first privately built liquid-fuel vehicle to reach orbit, in September 2008. Musk and his team were both elated and sobered. “We knew it would be hard,” Mueller says, “but it was harder than we thought.” The rest of the aerospace world took notice. With the early Falcon 1 failures, says Stern, Musk “showed spine, showed he would spend his own money, showed he would stick with it.” And the lessons learned from Falcon 1 smoothed the path for Falcon 9, whose successful maiden launch, in June 2010, impressed observers accustomed to watching other would-be rocket startups, from AMROC in the 1980s to Kistler in the 1990s, fail before getting anything into space. The Falcon 9 was designed from the beginning to be human-rated, meaning an increased focus on reliability. The rocket’s avionics and controls are triple- redundant (as will be some sensors in the human-rated version of the Atlas V), and the flight computers, which run on Linux, will “issue the right commands even if there’s severe damage to the system,” Musk says. The choice of nine engines for the first stage was made with reliability in mind: From the moment of liftoff, Falcon 9 can suffer an engine shutdown and keep