Maailmataju 31. March 2015 | Page 121

Alustame Fourier´i integraalist. Fourier´i integraal on Fourier´i rea üldistuseks mitteperioodiliste funktsioonide juhule. Ühe muutuja funktsiooni f(x) Fourier´i integraal on ( = ( g(k) funktsioon on f(x) funktsiooni Fourier´i pööre, mida on võimalik f(x) funktsiooni kaudu välja arvutada järgmiselt: ( = ( Praeguses näites vaatame aga teatud kindlal ajahetkel olevat lainepaketti. Lainepaketi kuju on võimalik esitada Gaussi jaotusena: ( = σ nimetatakse dispersiooniks, mis iseloomustab jaotuse laiust. Antud näites saab osakest kirjeldada lainepaketina. Järelikult dispersioon kirjeldab siin osakese asukoha määramatust △x = σ. Kui me f(x) funktsiooni esitame fourier´i integraalina, siis avaldub f(x) siinuseliste lainete eikx superpositsioonina. k on lainearv ja λ on lainepikkus = Lainepaketi lainearvu ja amplituudi komponente näitabki eespool väljatoodud g(k) funktsioon. Kui me g(k) funktsioonis asendame f(x) funk