Maailmataju 31. March 2015 | Page 120

suurem kiirus, seda väiksem on mass. See tähendab seda, et sellisel juhul on impulsid mõlemal korral samasugused. Mida suurem on mass, seda suurem on ka ju energia vastavalt E = mc2 seosele. Kui me ei teaks Plancki konstandi arvväärtust, siis ei saaks teha peaaegu mitte ühtegi kvantmehaanilist arvutust. Nii et see Plancki konstant on tegelikult väga tähtis, seepärast tulebki ta sisu mõista. Ilmselt etendab ta kvantmehaanikas samasugust rolli nagu valguse kiiruse konstantsus ( vaakumis ) relatiivsusteoorias. Katseandmetest on saadud Plancki konstandile järgmine väärtus: h = 1,054 * 10-34 J*s = 1,054 * 10-27 erg*s. Suurust, mille dimensiooniks on ENERGIA * AEG, nimetatakse mehaanikas mõjuks, sellepärast on Plancki konstant ka kui mõjukvant. h dimensioon ühtib ka impulsimomendi dimensiooniga. Väga tihti on aga Plancki konstant jagatud 2 piiga, seepärast on h tegelik arvväärtus aga järgmine: h = 6,62 * 10-34 J*s = 6,62 * 10-27 erg*s. Kompleksarvud kvantmehaanikas Schrödingeri võrrand sisaldab imaginaarühikut ja seega on selle võrrandi kõik lahendid üldiselt kompleksarvuliste väärtustega. Arvestada tuleb ainult võrrandi reaalosa. Kompleksarve ei ole võimalik järjestada. Kompleksarvud füüsikas ise ei oma tegelikult füüsikalisi tähendusi, vaid tuleneb ainult matemaatikast. Paljud füüsika võrrandid kirjutatakse sageli komplekskujul, sest siis on lihtsam sooritada arvutusi ( näiteks tuletusi ja integreerimist ). Kuna Schrödingeri võrrand on kvantmehaanika põhivõrrand, mis on ka komplekskujul, siis peaaegu ka kõik teised kvantmehaanika matemaatilised avaldised on kompleksed. Näiteks x-telje positiivses suunas leviva tasalaine võrrand esitatakse ka komplekskujul: Osakeste määramatuse seosed Osakesed teleportreeruvad ajas ja ruumis. Sellest tulenevalt käitub osake lainena. Tuntud määramatuse seosed tulenevad just osakese lainelistest omadustest. Osakest on võimalik kirjeldada lainepaketina, mis on ruumis lokaliseeritud ja mida on võimalik esitada teatud lainepikkusega siinuseliste lainete superpositsioonina. Järgnevalt näeme seda, et mida suurem on superpositsiooni lainearvude vahemik, seda kitsam on lainepakett. See kehtib ka vastupidisel juhul. Lainearv ja impulss on omavahel seotud. 98