Камера сгорания( КС) является ключевым лимитирующим элементом ЖРД. Поэтому ряд компаний проводят интенсивные работы по внедрению аддитивных технологий в производство КС. Так, европейский аэрокосмический концерн Airbus Group подтверждает возможность снижения себестоимости при использовании технологии DMLS для производства конструкций сложной геометрической формы типа КС в условиях единичного или мелкосерийного производства.
Снижение массы и улучшение аэродинамического качества деталей летательных аппаратов, характерные для применения АП, приводят к экономному расходу топлива( на 15 %) и снижению уровня загрязнения окружающей среды( на 3 %)( по данным компаний Snecma и GE Aviation). Специалисты Института физики атмосферы космического агентства Германии( IAP DLR) показали, что подобное сокращение выбросов в атмосферу сэкономит авиакомпаниям до 1 млн долл. ежегодно. Помимо этого, в АТ деталей планируется использовать новый керамический композиционный материал, который позволит работать при более высоких температурах.
Метод DMSL активно используется при изготовлении спутников. Инженеры Airbus Defence and Space( подразделения Airbus Group) применили метод для оптимизации конструкции кронштейнов, связывающих корпус спутника с солнечными батареями и радиоантеннами. Созданные на установке EOSINT M 280 детали соответствовали требуемым техническим условиям: выдерживать силовую нагрузку до 20 кН в температурном диапазоне от – 180 ° C до + 150 ° C. В дополнении к техническим характеристикам АП позволило на 20 % сократить расходы на производство и трудоемкость изготовления кронштейнов.
Компанией RedEye этим же методом изготовлены топливные баки для спутников Lockheed Martin Space Systems с двухкратным снижением расходов на их производство.
Развитием инновационных аддитивных технологий интересуются не только отдельно взятые компании. Как показывает практика, интерес к 3D-печати получил статус государственного значения в мире, поэтому каждое космическое агентство считает стратегически необходимым использовать его в производстве космической техники( КТ). Европейское космическое агентство( ESA) объявило о запуске проекта AMAZE, целью которого является АП металлических частей для космических кораблей, двигателей самолетов и ракет. Проводятся работы по созданию и доводке космического спутника, собранного полностью из таких частей.
В 2014 году 3D-принтер компании Made In Space доставлен на Международную космическую станцию( МКС) для создания деталей КТ в условиях невесомости. По мнению специалистов есть реальная возможность изготавливать на орбите до 30 % запчастей.
Рис. 13. Испытания двигателя с КС( компания SpaceX)
С 2016 года на орбите функционирует спутник российского производства, изготовленный с применением АТ специалистами Томского научного центра.
В январе 2014 года совершил первый полет истребитель Tornado GR4 военно-воздушных сил Великобритании, при изготовлении которого использованы металлические детали, изготовленные компанией Rolls-Royce с привлечением АТ. На основе успешных испытаний принято решение о серийном производстве части запчастей для британских истребителей с применением АТ. Показано, что это позволит экономить до 0,3 млн фунтов стерлингов в год.
Технологии послойного наложения расплавленной полимерной нити( Fused Deposition Modeling— FDM) позволяет использовать материалы производственного класса для изготовления деталей, работающих в условиях воздействия агрессивной среды и высоких температур. Среди продукции, созданной по данной технологии, особо важной для ОПК считается изготовление боевых беспилотных летательных аппаратов( БЛА) и учебных « дронов ». К конкретным примерам относятся кронштейны видеокамер
АДДИТИВНЫЕ ТЕХНОЛОГИИ / 1 • 2016 37