THE CHEMIST (e.g. May. 2014) | Page 10

ACIDS AND BASES OPPOSITES THAT NEUTRALIZE: Acid Rain

"Acid rain" is a broad term referring to a mixture of wet and dry deposition (deposited material) from the atmosphere containing higher than normal amounts of nitric and sulfuric acids. The precursors, or chemical forerunners, of acid rain formation result from both natural sources, such as volcanoes and decaying vegetation, and man-made sources, primarily emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx) resulting from fossil fuel combustion.

Acid rain occurs when these gases react in the atmosphere with water, oxygen, and other chemicals to form various acidic compounds. The result is a mild solution of sulfuric acid and nitric acid. When sulfur dioxide and nitrogen oxides are released from power plants and other sources, prevailing winds blow these compounds across state and national borders, sometimes over hundreds of miles.

Acid rain causes acidification of lakes and streams and contributes to the damage of trees at high elevations (for example, red spruce trees above 2,000 feet) and many sensitive forest soils. In addition, acid rain accelerates the decay of building materials and paints, including irreplaceable buildings, statues, and sculptures that are part of our nation's cultural heritage. Prior to falling to the earth, sulfur dioxide (SO2) and nitrogen oxide (NOx) gases and their particulate matter derivatives—sulfates and nitrates—contribute to visibility degradation and harm public health.

Over the past two decades, there have been numerous reports of damage to automotive paints and other coatings. The reported damage typically occurs on horizontal surfaces and appears as irregularly shaped, permanently etched areas. The damage can best be detected under fluorescent lamps, can be most easily observed on dark colored vehicles, and appears to occur after evaporation of a moisture droplet. In addition, some evidence suggests damage occurs most frequently on freshly painted vehicles. Usually the damage is permanent; once it has occurred, the only solution is to repaint.

Scientists have found different ways to reduce the amount of sulfur dioxide released from coal-burning power plants. One option is to use coal that contains less sulfur. Another option is to “wash” the coal to remove some of the sulfur. The power plant can also install equipment called scrubbers, which remove the sulfur dioxide from gases leaving the smokestack. Because nitrogen oxides are created in the process of burning coal and other fossil fuels, some power plants are changing the way they burn coal.

A great way to reduce acid rain is to produce energy without using fossil fuels. Instead, people can use renewable energy sources, such as solar and wind power. Renewable energy sources help reduce acid rain because they produce much less pollution. These energy sources can be used to power machinery and produce electricity.