Test Drive | Page 40

LA QUÍMICA DE LA VIDA: ΝIVEL ORGÁN ICO azúcares es un monosacárido o azúcar simple. Éste puede tener de tres a siete o más átomos de carbono, pero los monosacáridos más comunes contienen seis átomos y se conocen como hexosas. EJEMPLO 2 Una hexosa típica como la glucosa (también llamada dextrosa) consta de una cadena de carbono a la que están unidos varios grupos hidroxilo. (En la figura 3.1 se presentan las fórmulas estructurales de la glucosa y de otra hexcsa, la fructosa.) Estos grupos —OH le dan a la molécula dulzura y solubilidad en agua. La glucosa posee un =O unido a su carbono terminal, lo que la convierte en un aldoazúcar. Si está presente un grupo C=O interno (como en la fructosa), el monosacárido es un cetoazúcar. Los monosacáridos pueden unirse entre sí mediante un proceso denominado síntesis por condensación o deshldrataclón. En dicho proceso se unen dos monosacáridos para formar un dlsacárldo y se libera una molécula de agua (tienen que desprenderse un —OH de uno de los monosacáridos y un —Η del otro para que se forme el enlace C—O—C entre los dos monómeros o unidades básicas). El azúcar de mesa es un disacárido que se forma por condensación de glucosa y fructosa. Luego puede ocurrir otra condensación para la formación de trisacáridos, y así sucesivamente, para la síntesis de polisacáridos. El glucógeno es el principal polisacárido presente en las especies de animales superiores. Los principales poiisacáridos de las plantas son el almidón y la celulosa. Todos ellos tienen glucosa como monómero básico. El glucógeno es una cadena muy ramificada de unidades de glucosa, que funciona como molécula de almacenamiento de calorías en los animales y se encuentra principalmente en el hígado y los músculos. La porción recta de la cadena se forma mediante enlaces 1 → 4 de las unidades de glucosa [es decir, el átomo C-1 (primer carbono) de una molécula de glucosa se liga al átomo C-4 de la otra glucosa], mientras que las porciones ramificadas se forman con enlaces 1 →6. La enzima sintasa del glucógeno cataliza la formación de la porción recta del glucógeno, mientras que la amilo-(1,4 → 1,6)transglicosilasa favorece la formación de las ramificaciones. La degradación del glucógeno depende de dos enzimas: una que rompe los enlaces 1 -> 4, llamada fosforilasa del glucógeno, y otra que rompe los enlaces 1 → 6, la α·(1 → 6)-glucosidasa. El rompimiento de los enlaces se efectúa mediante una inversión del proceso de condensación, de modo que vuelve a entrar agua a la molécula. Por consiguiente, se reponen los grupos OH y =H y de esa manera se rompe el enlace. Este proceso se denomina hidrólisis. La concentración de las enzimas que facilitan la síntesis de glucógeno a partir de glucosa aumentan en presencia de insulina, hormona secretada en el torrente 27 sanguíneo cuando las concentraciones de glucosa en la sangre empiezan a elevarse. Enzimas como la fosforilasa, que es activada por las hormonas adrenalina (epinefrina) y glucagón, degradan el glucógeno a sus moléculas constituyentes de glucosa. En las plantas, la principal forma de almacenamiento de glucosa es el almidón. Esta sustancia existe en dos formas: α-amilosa, integrada por largas cadenas sin ramificaciones, y amilopectina, forma ramificada cuyas bifurcaciones se deben a enlaces 1 → 6. El principal componente estructural de las plantas es la celulosa, polisacárido insoluble en agua que forma largas cadenas de enlaces 1 → 4 no ramificadas. Dichas cadenas se unen entre sí para integrar las paredes celulares de las plantas. La estructura paralela y la ausencia de ramificaciones dan a estas cadenas tenacidad y resistencia a la hidrólisis. Debido a una variación en los enlaces 1 -> 4 de la celulosa, las enzimas animales normalmente usadas para la digestión de poiisacáridos son ineficaces ante aquélla. Los rumiantes y otros animales que digieren la celulosa, pueden hacerlo gracias a las bacterias simbióticas que viven en sus aparatos digestivos, las cuales producen la enzima celulasa, capaz de degradar ese polisacárido. Un polímero estructural parecido a la celulosa, pero normalmente presente en los hongos y en los exoesqueletos de los insectos y oíros artrópodos, es la quitina. Esta sustancia consta de cadenas de glucosa en las que uno de los hidroxiios fue sustituido por un grupo amino. 3.3 PROTEÍNAS Las proteínas son una clase de compuestos orgánicos formados casi exclusivamente por carbono, hidrógeno, oxígeno y nitrógeno. En realidad, las proteínas son polímeros integrados por muchas subunidades (monómeros) llamadas aminoácidos. Los aminoácidos que suelen encontrarse en las proteínas tienen la siguiente estructura: El grupo COOH (carboxilo) es característico de todos los ácidos orgánicos y está fijo al mismo carbono que el grupo NH2. Ese átomo se denomina carbono alfa; por tanto, el aminoácido recibe el nombre de α-aminoácido. La R simboliza cualquiera de una variedad de grupos sustituyentes, los cuales diferencian a los 20 aminoácidos presentes en la naturaleza. Ciertas propiedades de cada proteína, como su solubilidad en agua o su carga, se deben al tipo de grupos R presentes en los aminoácidos que la constituyen.