Test Drive | Page 195

182 BIOLOGÍA necesario para su mantenimiento y para fijar el nitrógeno. Eso es necesario porque el N2 es una molécula muy estable y se necesitan grandes cantidades de energía para romperla. Las bacterias mutualistas presentes en los nodulos consumen cerca de la quinta parte del ATP producido por las plantas de chícharo. 13.5 Ya se vio que el agua, junto con cualquier sustancia disuelta en ella, puede fluir libremente entre las células laxamente unidas de la corteza. Sin embargo, debido a la banda de Casparl, el agua tiene que pasar a través de las células del endodermo en vez de hacerlo entre ellas. Gracias a la permeabilidad selectiva de sus membranas plasmáticas, las células endodórmicas actúan como filtros que impiden el Ingreso de ciertos iones, moléculas voluminosas y toxinas presentes en el sistema de transporte situado afuera del haz vascular. En realidad, el ciclo del nitrógeno está integrado por dos ciclos. Explique. En uno de esos ciclos, las bacterias fijadoras de nitrógeno extraen el nitrógeno elemental de la atmósfera, lo convierten en nitratos o en amoniaco y luego lo incorporan a moléculas orgánicas. Sin embargo, las bacterias desnitrificadoras actúan sobre los nitratos y nitritos para producir nitrógeno elemental, de modo que retornan N2 a la atmósfera y así se completa el ciclo. En el segundo ciclo, el amoniaco y los nitratos son incorporados a moléculas orgánicas. Durante el proceso de descomposición, esas moléculas son amoniacadas y luego nitrificadas a nitratos. Si estos son reabsorbidos por las plantas y reincorporados a moléculas orgánicas en vez de ser desnitrificados, se completa el segundo ciclo. 13.6 imposible el paso de agua entre las células endodérmicas adyacentes. Esa banda de Casparl cerosa circunda por completo el cilindro vascular. ¿Cuál supone el lector que sea la función de esta estructura? 13.8 En algunos casos se siembra trébol para mejorar los suelos pobres en nitrógeno. Dado que el trébol también necesita nitrógeno, ¿cuál es la finalidad de este procedimiento? Las células endodérmlcas gruesas pertenecen al floema, mientras que las células de paso se localizan más bien en los brazos opuestos del xilema. Como ya se vio, la banda de Caspari fuerza el agua que fluye hacia el estele a pasar a través de las células del endodermo. Las paredes delgadas de las células de paso hacen que éstas sean más aptas que las células de paredes gruesas para el transporte de agua y solutos hacia el estele. Puesto que el xilema transporta agua y nutrientes hada el resto de la planta, es lógico que esté situado junto a las células de paso, las cuales lo abastecen de agua. El trébol mantiene una relación simbiótica con bacterias fijadoras de nitrógeno. Por consiguiente, la mayor parte de su nitrógeno proviene de la atmósfera y no del suelo. Si el cultivo de trébol es enterrado con la maquinaria agrícola, se incorpora al suelo el nitrógeno que éste obtuvo de la atmósfera y, de ese modo, el suelo obtiene un incremento neto en su contenido del elemento. 13.7 Como ya se vio, la capa celular más interna de la corteza de las raíces es la endodermis. Las células de esta capa simple están apretadas de tal modo que forman un anillo en el que prácticamente no hay espacios intercelulares. Asimismo, cada anillo de endodermo se une estrechamente a los anillos tisulares situados encima y debajo de él y, de esa manera, forma un denso cilindro de células. Dentro de su pared celular, cada célula endodérmica está circundada por una banda vertical de cera que corre paralelamente al anillo; esa banda es continua con las bandas cerosas de las dos células adyacentes a ambos lados, en el mis mo anillo, y con las bandas de las células de los anillos situados arriba y abajo. Gracias a esa con tinuidad, las bandas son como un enorme empaque en cuyos orificios están empotradas las células del cilindro endodérmico, de modo que es En la figura 13.5a se presenta el haz vascular del ranúnculo, una dicotiledónea. Alrededor del haz pueden apreciarse las células gruesas del endodermo y las células endodórmicas de paso, cuyas paredes son más delgadas. También se ve un claro patrón establecido entre esos dos tipos celulares y los componentes del haz vascular. Describa el patrón y explique por qué existe. 13.9 Las plantas del desierto y las que crecen cerca del océano ocupan hábitat muy diferentes y, sin embargo, presentan modificaciones muy parecidas, sobre todo en lo que respecta a las adaptaciones para retener el agua. ¿Cuál puede ser la causa de este fenómeno? Desde luego, en el ambiente del desierto escasea el agua y las plantas desertícolas presentan células de menores dimensiones, paredes celulares más gruesas y pocos estomas, los que además permanecen cerrados por periodos más largos. Estos cambios se relacionan con la adaptación primaria e incluso con la secundaria a la escasez de agua. Por otra parte, la hipertonicidad asociada con el agua de mar también amenaza con privar a las plantas del agua que hay en el suelo y en sus propios tejidos. Por tanto, no es sorprendente encontrar modificaciones similares en las plantas que crecen en las playas y las que crecen en el desierto, aunque en el caso de las plantas de