Test Drive | Page 125

112 BIOLOGÍA entrecruzamiento. La regularidad del número de quiasmas formados durante la meiosis sugiere que el entrecruzamiento no es un fenómeno fortuito, sino un mecanismo normal de incremento de la variabilidad genética. 8.6 REPRODUCCIÓN SEXUAL Y VARIABILIDAD GENÉTICA Una explicación de la universalidad de la reproducción sexual es que genera una variabilidad genética sobre la cual pueden actuar las fuerzas evolutivas. Si todos los organismos de una especie fueran exactamente iguales, todos serían destruidos cuando el ambiente se tornara inhóspito. Por el contrario, si los miembros de la misma especie son más variables en sus características, los cambios ambientales que destruyen algunas variantes no afectan a otras. La variación, al darle flexibilidad a la especie, incrementa sus probabilidades de supervivencia cuando tiene que enfrentar cambios en su entorno. Ya vimos que la mutación genética es una fuente de variación; sin embargo, su expresión no depende necesariamente de la reproducción sexual. Dado que pone juntos dos genomas totalmente distintos, la reproducción sexual aumenta significativamente la variabilidad genética. Y para complementar esa variabilidad, la meiosis introduce otras dos fuente? de recombinación genética. La primera de esas fuentes es la recombinación de los cromosomas enteros. Recuérdese que en el cigoto diploide, uno de los cromosomas homólogos de cada par cromosómico proviene del padre (cromosoma paterno), mientras que el otro corresponde a la madre (cromosoma materno); por tanto, la mitad de los cromosomas son paternos y la mitad, maternos. Con todo, el organismo resultante del cigoto acabará por producir gametos haploides. En vista de que durante la meiosis I los homólogos paternos y maternos se alinean al azar unos frente a otros en ambos lados del plano ecuatorial, cada célula hija resultante contendrá una mezcla haploide particular de cromosomas maternos y paternos (y, por tanto, de genes y caracteres maternos y paternos). Es probable que algunas de esas combinaciones jamás hayan existido en la condición haploide. Además, cuanto mayor sea el número de pares de cromosomas del organismo, mayor será la variabilidad potencial de sus gametos. La importancia de esta recombinación de los cromosomas se estudia más a fondo en el capítulo 9, que trata de los mecanismos de la herencia. EJEMPLO 6 En una célula que sólo posee un par de cromosomas homólogos sólo pueden haber dos clases generales de gametos al terminar la meiosis: células con el cromosoma materno y células con el cromosoma paterno. Es decir, entre los numerosos gametos resultantes de la gametogónesis, aproximadamente el 50% contendrán el homólogo materno y 50%, el paterno. En las células cuyo número cromosómico es 4 pueden formarse dos tetradas: M,P, y M2P2- Por tanto, al final de la meiosis habrá cuatro clases diferentes de gametos: M,M2, M,P2, P,M2 y P,P2. La fórmula matemática que permite calcular el número de clases de gametos que podrían resultar de una célula en meiosis es 2n, donde η representa e l número haploide (número de tetraa3 das). En el ser humano, cuyo π es 23, hay 2 (es decir, más de ocho millones) de clases diferentes de gametos posibles; esto tan sólo a partir de la recombinación de los cromosomas maternos y paternos entre los gametos. Cada óvulo o espermatozoide puede contener todos los cromosomas maternos, todos los paternos o cualquier combinación de ambos. La segunda fuente de variación por combinación cromosómica es el entrecruzamiento. También en este caso, la combinación ocurre entre los cromosomas maternos y paternos, pero se realiza dentro de cada par de homólogos. Tal como sucede con la distribución Fig. 8.5 Entrecruzamiento