Test Drive | Page 124

REPRODUCCIÓN CELULAR 111 distribución del citoplasma entre las células hijas y a la modificación de éstas (Fig. 8.4). EJEMPLO 5 Los óvulos se derivan de células diploides llamadas ovogonlas, las cuales se localizan en los folículos del ovarlo. Esas ovogonias pueden crecer y sufrir modificaciones preparatorias previas a la división meiótica. Al llegar el momento de esta división, las ovogonlas empiezan a llamarse ovocitos primarios. El resultado de la primera división meiótica es un voluminoso ovocito secundarlo (que contiene la mayor parte del citoplasma original) y un diminuto cuerpo polar. Tanto el ovocito secundario como el cuerpo polar tienen un juego cromosómico haploide, pero el ovocito retiene la mayor parte del material alimenticio de la célula. Durante la segunda división meiótica se vuelven a formar una célula voluminosa y un segundo cuerpo polar. La célula grande se desarrolla para convertirse en un óvulo maduro, mientras que el cuerpo polar se desintegra. En caso de que el primer cuerpo polar sufra la meiosis II, los dos cuerpos polares resultantes se degradan poco después. El resultado de la meiosis en las hembras de los animales es la producción de un solo óvulo haploide de gran tamaño. En los machos, las espermatogenias diploides proliferan mitóticamente en los testículos dentro de estructuras especiales denominadas, con gran acierto tubos seminíferos, que significa "tubos que contienen semillas". Al madurar, esas espermatogonias sufren modificaciones para convertirse en espermatocitos primarios, las células que sufren la primera división meiótica para formar espermatocitos secundarlos haploides. Cada uno de los espermatocitos secundarios sufre la meiosis II para producir un total de cuatro células haploides con cromosomas de cadena sencilla, ya que la segunda división meiótica es igualadora y consiste en la simple separación de las cromátidas de los juegos cromosómicos haploides. Las cuatro células son viables y, a diferencia del fenómeno de los cuerpos polares de la ovogénesis, por lo común tienen cantidades equitativas de citoplasma. Las células resultantes del proceso global de meiosis se llaman espermátidas. Dichas células todavía tienen que sufrir considerables modificaciones citoplásmlcas antes de ser liberadas como espermatozoides funcionales. Durante ese proceso, tomando los seres humanos como ejemplo, casi todo el citoplasma se modifica para integrar una pieza media motora y una larga cola (flagelo). La pieza media tiene gran cantidad de mítocondrias, las cuales generan la energía necesaria para que esa subestructura agite la cola, que se encarga de la movilidad del espermatozoide. La cabeza del espermatozoide, análoga a la carga explosiva detonadora situada en la cabeza de un cohete, consta en esencia del núcleo espermático desnudo. Cerca de la punta se observa una estructura especializada, el acrosoma, proveniente de las vesículas de Golgi del espermatozoide. Dicha estructura contiene varias enzimas hidrolíticas que permiten al espermatozoide penetrar a través de la gelatina protectora que envuelve al óvulo. La cabeza está separada de la pieza media por un corto cuello. La cola se forma como una prolongación d e dicha pieza. En los seres humanos, el feto femenino empieza a formar las células (ovogonias) que, después del nacimiento y el desarrollo, se quedarán suspendidas en forma de óvulos dentro de los ovarios. Es decir, esas células comienzan a sufrir la meiosis mientras están todavía en el embrión, pero quedan suspendidas en la profase de la meiosis I. Ese estado de "suspensión animada" persiste hasta poco antes de la fecundación; la segunda división meiótica ocurre hasta después de la fecundación. En los varones, la meiosis no se inicia sino hasta que el individuo alcanza la madurez sexual. 8.5 UN POSIBLE MECANISMO DE ENTRECRUZAMIENTO Se tienen pruebas de que, en bs cromosomas en sinapsis, una serie de elementos axiales formados por proteínas corren a lo largo de cada cromosoma y sirven como una delgada estructura de soporte para las cromátidas. Más tarde se forman puentes proteínicos entre los dos ejes para integrar una estructura muy compleja en la que se observan lazos de DNA junto con RNA. El conjunto de varillas proteínicas longitudinales de cada cromosomas, junto con las protuberancias laterales que los unen conectando las cuatro cromátidas, se llama complejo sinaptonémlco. Es mediante la formación y la continua influencia de este complejo situado entre los homólogos pares, que los elementos individuales de la tetrada quedan perfectamente alineados entre sí. Más adelante en la meiosis, cuando los cromosomas se separan (en el proceso de desunión), el complejo sinaptonémico empieza a desarmarse. Algunos investigadores atribuyen al complejo sinaptonémico la tendencia de las cromátidas hermanas a mantenerse unidas entre sí durante la meiosis I. Sin embargo, la mayoría de los citólogos opinan que ese fenómeno se debe a la incapacidad de los centrómeros para dividirse. Se dispone de pruebas convincentes de que en algunas especies ocurre un engrasamiento proteínico de los puentes del complejo sinaptonémico en los sitios que más adelante se convertirán en quiasmas. Se supone que esos nódulos de recombinación participan en la separación de las cromátidas homologas en el mismo sitio y en el intercambio de los dos segmentos cromatídicos resultantes. Este empalme de un segmento de la cromátida materna al "muñón" de una cromátida paterna y la subsecuente unión del segmento correspondiente de la cromátida p ate r na al "m uñ ón " ma te rn o pr oduc e l os cromosomas híbridos que contribuyen a aumentar ia variabilidad genética. Cuando al final de la profase de la meiosis I los cromosomas empiezan a separarse tienden a mantenerse unidos por los quiasmas. El hecho de que el número de quiasmas sea aproximadamente igual al número de nódulos de recombinación formados dentro del complejo sinaptonémico, se considera una prueba contundente de que esos nódulos de recombinación participan en el