Test Drive | Page 49

www.elsolucionario.net Electronica Básica para Ingenieros vs ~ ib RB io + RL + Zo Rs io RS Zo' Zi vo vs ~ hie vi RE a) hfeib RB -1 vo hoe RE RL b) hre=0 AV = − AI = − h fe R L h ie + (1 + h fe )R E h fe R B R B + h ie + (1 + h fe )R E AV = − Zi = −1 h fe h oe RL −1 −1 RE + R L ) + h fe h oe (h ie + R E )(h oe −1 R L ( h ie + R E ) + h oe (h ie + (1 + h fe )R E ) || R B −1 R E + R L + h oe Z i = R B || ( h ie + (1 + h fe )R E )  h fe R E −1  Z© o = h oe 1 +  + R E || ( h ie + R B || R S ) h R R R + + || ie E B S  © Z© o = ∞; Z o = Z o || R L = R L Z o = Z© o || R L c) d) Figura 2.10. Análisis de un amplificador en emisor común con resistencia de emisor. a) Circuito equivalente en alterna, b ) circuito de pequeña señal con hre=0. Tabla con las características del amplificador con c ) hre=hoe=0 y con d) hre=0. 2.5.- Análisis de un amplificador básico El análisis de un amplificador tiene como objetivo obtener su modelo equivalente en tensión o intensidad para lo cual es preciso determinar su impedancia de entrada, impedancia de salida y ganancia de tensión o intensidad. Para ello, es necesario en primer lugar obtener su circuito equivalente de alterna del amplificador y, posteriormente, sustituir el transistor por alguno de las tres posibles modelos en parámetros {H} indicados en la figura 2.9 en función de la configuración del transistor. El circuito resultante se adapta en la mayoría de los casos a los circuitos indicados en la Tabla 2.2. Esta tabla proporciona en formato tabular las características del amplificador para diferentes aproximaciones (despreciando o no ho y hr) y simplifica su resolución a una simple sustitución de los valores. Nótese que estas fórmulas son independientes de la configuración, y por consiguiente, son válidas para E-C, B-C y C-C. En la figura 2.10 se indican las ecuaciones para la configuración emisor-común con resistencia de emisor por no adaptarse a las ecuaciones de la anterior tabla. En