RocketSTEM Issue #6 - March 2014 | Page 64

(IRAC), the Infrared Spectrograph (IRS), and the Multi-band Imaging Photometer for Spitzer (MIPS)—all featured significant involvement from academic and industry. With a final price tag estimated at about $800 million, SIRTF rocketed into space from Space Launch Complex (SLC)-17B at Cape Canaveral Air Force Station, Fla., at 1:35 p.m. EDT on 25 August 2003. Original plans called for SIRTF to operate for at least 30 months, although it was hoped to run the observatory for as long as five years or until its liquid helium coolant was depleted. As circumstances transpired, this depletion did not occur until May 2009, after which it was determined that the two shortest-wavelength components of IRAC remained operable and a “Warm Mission” was authorised. By this time, SIRTF had since been renamed in honour of the U.S. theoretical physicist and astronomer Lyman Spitzer (1914-1997), one of the earliest proponents for the idea of a space-based telescope. The formal announcement of the spacecraft’s new name came in December 2003, when NASA lauded Spitzer’s “vision and contribution to science” and noted that a NASAsponsored contest had “received more than 7,000 essay entries from all over the Spitzer has found buckyballs in space, as illustrated by this artist’s conception showing the carbon balls coming out from the type of object where they were discovered - a dying star and the material it sheds, known as a planetary nebula. Image: NASA/JPL-Caltech/T. Pyle (SSC) 62 62 world.” The winning entry came from a resident of British Columbia. Since then, the mechanical Spitzer has played an enormous role in opening our eyes and consciousness to the mysteries and wonders of the Universe around us. It This diagram illustrates where Spitzer’s vision extends in the spectrum of light, shown as a horizontal band. Vertical bars indicate different regions of the electromatic spectrum. On the left is the visible spectrum, covering the extent of human vision. On the right are the wavelengths spanned by Spitzer’s detectors. has been used to examine comets and asteroids, count stars, scrutinise planets and galaxies and image football-shaped carbon spheres in space, known as ‘buckyballs’. Particular focuses have included Comet Tempel 1—impacted by NASA’s Deep Impact mission—and the surprising discovery in October 2009 of Saturn’s largest ring. Now known as the “Phoebe ring”, its existence had been predicted in the 1970s and it lies just interior of the orbit of the moon Phoebe. It was calculated to extend outward up to 300 Saturn radii and inward to the orbit of the moon Iapetus at 59 Saturn radii, making its thickness about 20 times that of the diameter of the giant planet itself. Perhaps Spitzer’s most astonishing finds came from beyond our Solar System. The telescope was the first to detect light coming from a planet outside the Sun’s realm, which represented a feat not in the mission’s original design. With Spitzer’s ongoing studies of these exotic worlds, astronomers have been able to probe their composition, dynamics, and more, revolutionising the study of “exoplanet” atmospheres. Other discoveries and accomplishments of the mission include a complete census of forming stars in nearby clouds, a new and improved map of the Milky Way’s spiral-arm structure, www.RocketSTEM.org