RocketSTEM Issue #2 - April 2013 | Page 14

X-rays from the Sun, for example, we’ve got to get up above the atmosphere and go into space. “There are two wavelength bands where the atmosphere is transparent and lets in radiation from outside. One is at visible wavelengths. After all you can see the stars at night and that means that the sky is transparent to visible light. The other is in the radio. The long wavelengths of radio waves, the low energy photons, come pretty much unimpeded through the atmosphere. Only at visible and radio wavelengths can astronomy be done from the ground. If you want to study ultraviolet, or most infrared emission, or X-rays, you’ve got to go into space. So again, it’s complementary.” Q: How did you become an astronomer and end up working with the NRAO? Lockman: “I was always inter- ested in science. Luckily, I got to attend Drexel University in Philadelphia. It has a cooperative education program that puts students to work in industries related to their major field of study for six months out of each year. You actually work in your profession and get paid! In that program it took five years instead of four to get a degree, but it was worth it. I was lucky enough to get a position as an undergraduate research assistant at the National Radio Astronomy Observatory Headquarters in Charlottesville, Virginia. “So as a teenager I was thrown into a research environment and just loved it. I really thrived on being around scientists who were active in research, and I loved the whole scientific endeavor. I would come to work on a Monday morning and there would be someone who had found something interesting that they wanted to talk about. It was a very exciting experience. “I’ve also always enjoyed talking about research, and I’m more than happy to speak to people or make presentations and try to inspire the next generation -- not necessarily to become astronomers, but to con- 12 12 The Green Bank Telescope is the world’s largest fully steerable radio telescope. Sitting within the heart of the National Radio Quiet Zone, The telescope focuses 2.3 acres of radio light on sensitive receivers at the top of the telescope. It is 485 feet tall which is nearly as tall as Photo: Walter Scriptunas II the nearby mountains. sider careers in science, technology, engineering or mathematics. A lot of kids these days don’t have good local role models that would allow them to think that maybe they could become a scientist. Or maybe they could become a mechanical engineer or a mechanic on a large structure like a radio telescope. It’s important to get out and get the message out.” Q: There have been news reports that consideration is being given to closing the Green Bank Telescope facility for budgetary reasons. Is that true? Lockman: “This is not our choice. This is something that the National Science Foundation is considering, and it would mean a massive reduction in the radio astronomy capability of the United States. There’s no other telescope that can do the majority of the research that is done here in Green Bank. It would be a major loss of scientific facilities for American astronomers. “We operate the Geen Bank Telescope (GBT) for the National Science Foundation at no charge to the scientists who use it. Any scientist, whether at a small college or a large university, who has a good idea can write a proposal to use the GBT. These are evaluated by independent scientists, and the best proposals get time on the telescope. In the last six years more than 1,000 individual scientists and their students have used the GBT for projects ranging from comets to cosmology. In recent years federal funding for most scientific research has fallen short of what is needed and the pressure on the GBT is symptomatic of a larger problem.” Q: Looking through a telescope seems to be only a small part of astronomy research. What else is involved? Lockman: “Quite a bit. I’m sit- ting here at my desk in front of several computers. The amounts of data that we’re getting now can be so large that you need fairly hefty computational facilities to make any progress in analyzing them. “One of the things that we do with astronomical radio signals is to try to turn them into images of the radio sky. If your eyes could see radio waves, how would the sky appear? Our eyes are very good at picking up patterns, and understanding relationships. We understand much more from points on a graph than from the same numbers in a table. The Observatory employs computer specialists who work in data visualization. It’s an increasingly important field in astronomy. We have electronics engineers here who build the one-of-a-kind receivers needed to pick up and amplify the very faint www.RocketSTE M.org