RocketSTEM Issue #12 - July 2015 | Page 6

five-decade-long era of solar system reconnaissance that began with Venus and Mars in the early 1960s, continuing through first looks of Mercury, Jupiter and Saturn in the 1970s and Uranus and Neptune in the 1980s. The July 14 flyby of Pluto will occur 50 years to the day after humans first explored Mars with NASA’s Mariner 4 on July 14, 1965. The Pluto system is unique in that it contains the only binary planet system in our Solar System. Pluto and its largest moon Charon are what scientists refer to as a double-dwarf system. Pluto is currently classified as a dwarf planet; while Charon is technically labeled a moon, both bodies orbit the same point in space—a point that isn’t within the circumference of either body. Just like the Earth and the moon, Pluto and Charon are tidally locked in an orbital dance. The two orbit like unbalanced weights on a dumbbell, each pulling on the four smaller moons—Nix, Styx, Hydra, and Kerberos—that orbit the pair. Using the Hubble Space Telescope, the researchers conducted a comprehensive analysis of the system and concluded that the two largest moons, Nix and Hydra, wobble chaotically as they orbit. Styx and Kerberos are expected to behave in the same manner, although further observations are needed to confirm this prediction. We can tell that the wobble is intensified by the fact that the four moons are not spherical in shape; they’re elongated, much like a football. Pluto was discovered in 1930 by astronomer Clyde Tombaugh at the Lowell Observatory in Flagstaff, AZ. Shortly after the New Horizons mission was launched in 2006—and after the discovery of another Kuiper Belt Object (Eris) —astronomers voted to demote Pluto from its planetary status. In honor of Tombaugh, a small New Horizons carries some of his ashes on board as he passed away before the mission could get off the ground. Astronomers want to know how a system like Pluto and its moons could form. The prevailing theory: Pluto collided with another large Artist’s impression of the New Horizons spacecraft encountering a Kuiper Belt object. Credit: JHUAPL/SwRI body in the distant past, and much of the debris from this impact went into orbit around Pluto, eventually coalescing to form Charon. Scientists believe that a similar collision led to the creation of Earth’s moon, so the study of Pluto and Charon could help scientists decipher the history of our own planet. Scientists want to figure out why Pluto and Charon look so different. From Earth, the Hubble Space Telescope and New Horizons, we have seen that Pluto has a reflective surface with distinct markings indicative of polar caps. Charon’s surface is far less reflective, with indistinct markings. Pluto has an atmosphere, and Charon does not. Is the sharp contrast between these two bodies a result of evolution or is it due to how they formed? New Horizons will hopefully be able to solve this mystery. Artist’s concept of the New Horizons spacecraft as it approaches Pluto. The craft will study the global geology and geomorphology of Pluto and large moon Charon, map their surface compositions and temperatures, and examine Pluto’s atmosphere in detail. Credit: Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute (JHUAPL/SwRI) 04 04 Pluto’s density, size and surface composition are strikingly similar to those of Neptune’s largest satellite, Triton — a captured body from the Kuiper Belt. One great surprise of Voyager 2’s exploration of the Neptune system was the discovery of ongoing cryovolcanic activity on Triton. Will Pluto or other KBOs display such activity? Another fascinating aspect of www.RocketSTEM .org