RocketSTEM Issue #11 - April 2015 | Page 14

Age and size of the Universe: How Hubble has calculated the age of the cosmos and discovered the Universe is expanding at an ever faster rate The top ranked scientific justification for building Hubble was to determine the size and age of the Universe through observations of Cepheid variables. The periodic brightness variations of these stars depends on physical properties of the stars such as their mass and true brightness. This means that astronomers, just by looking at the variability of their light, can find out about the Cepheids’ physical nature, which then can be used to determine their distance. Astronomers have used Hubble to observe Cepheids with extraordinary results. The Cepheids have then been used as stepping-stones to make distance measurements for supernovae, which have, in turn, given a measure for the scale of the Universe. Today we know the age of the Universe to a much higher precision than before Hubble: around 13.7 billion years. The expansion of the Universe Another purposes of Hubble was to determine the rate of expansion of the Universe, known as the Hubble Constant. After eight years of Cepheid observations this work was concluded by finding that the expansion increases with 70 km/second for every 3.26 million light-years you look further out into space. For many years cosmologists have discussed whether the expansion of the Universe would stop in some distant future or continue ever more slowly. The observations of distant supernovae made by Hubble indicate that the expansion is nowhere near slowing down. In fact, due to some mysterious property of space itself, called dark energy, the expansion is accelerating. This surprising conclusion came from combined measurements of remote supernovae with most of the world’s top-class telescopes, including Hubble. The discovery of the accelerating expansion of the Universe led to three astronomers, Saul Perlmutter, Adam Riess and Brian Schmidt, being awarded the 2011 Nobel Prize in Physics. This image shows a smoothed reconstruction of the total (mostly dark) matter distribution in the COSMOS field, created from data taken by the Hubble Space Telescope and ground-based telescopes. It was inferred from the weak gravitational lensing distortions that are imprinted onto the shapes of background galaxies. The colour coding indicates the distance of the foreground mass concentrations as gathered from the weak lensing effect. Structures shown in white, cyan, and green are typically closer to us than those indicated in orange and red. To improve the resolution of the map, data from galaxies both with and without redshift information were used. The new study presents the most comprehensive analysis of data from the COSMOS survey. The researchers have, for the first time ever, used Hubble and the natural “weak lenses” in space to characterise the accelerated expansion of the Universe. Credit: NASA, ESA, P. Simon (University of Bonn) and T. Schrabback (Leiden Observatory)