Maailmataju September 11 | Page 138

tõesti teleportreeruvad ajas ja ruumis, kuid see põhjustab ju osakeste lainelisi omadusi ehk osake käitub kui laine. Seetõttu võib aegruumis liikuvat osakest kujutada lainepaketina ehk lokaliseeritud lainena, mis kujutab endast mitme või lõputu siinuselise laine superpositsiooni. See tähendab ka seda, et osakese lainepakett kannab endas impulsi ja energiat ning selle lainepaketi levimiskiirust näitab laine rühmakiirus, mis ongi võrdne ka osakese reaalse liikumiskiirusega. Ja see allub juba täielikult relatiivsusteooria põhinõuetele. Osakesed järgivad relativistliku mehaanika seadusi. Näiteks relativistliku dünaamika põhivõrrand on E2=c2 p2+m02 c4. Kasutades kvantmehaanikas tuntud osakese energia ja impulsi avaldisi = = on relativistliku dünaamika põhivõrrandist tuletatud relativistliku kvantmehaanika üks põhivõrrandeid: = Kui aga kasutame d-Alambert´i operaatorit =△ = ehk lihtsalt d´Alambert´i ja võtame dimensiooniks h=c=1, siis saamegi Klein-Gordon´i võrrandi: = Elektroni relativistlik võrrand saadakse Cliffordi algebra ja Pauli maatriksite arvutuste tulemusena Dirac´i võrrandist: + = Kui kiirused on väga suured, siis osakesed muunduvad üksteiseks. Plancki konstant Plancki konstant h on kvantmehaanikas väga oluline parameeter, sest ilma selleta ei saa teha mitte ühtegi matemaatilist arvutust kvantmehaanikas. Ka valguse kiirus c oli samuti määrava tähtsusega relatiivsusteoorias. Seepärast on oluline näidata seda, et mis see konstant on ja kust see füüsikast välja tuleb. Esimest korda tuleb Plancki konstant h välja tegelikult hoopis Plancki valemis: = = A. Einsteini poolt antud seisuenergia erirelatiivsusteooriast on aga = = 103