Maailmataju September 11 | Page 137

= = Relatiivsusteooriast on teada energia, massi ja impulsi vahelist seost: = = + Ja siin ongi näha seda, et de`Broglie osakese rühmakiirus on võrdne osakese tegeliku liikumiskiirusega v: = = + = = Nendest võrranditest järeldub selgesti see, et osakese kirjeldamine lainena on võimalik. ( Loide 2007, 25-26 ). Lainetel on palju seaduspärasusi, mis kanduvad üle ka siis osakestele. Eelnevalt vaatasime pikalt osakeste difraktsiooni- ja inteferentsinähtusi. Kuid need pole kaugeltki ainsad efektid, mis osakestel esinevad. Näiteks on teada seda, et statsionaarsetele orbiitidele mahub ainult täisarv elektronlaineid. Võtame näiteks mõne suvalise vesinikuaatomi statsionaarse orbiidi raadiusega r. Arvutame välja lainepikkuse ja ringjoone suhte: Saadud valem näitab seda, et mitu lainepikkust mahub antud orbiidile. Selleks avaldame raadiuse Bohri kvanttingimusest: 2πr = n λ = n ( h / mv ) ehk mvr = nh Valemist = saame välja arvutada lainepikkuse. Siis saame = Viimane seos näitab seda, et kui palju mahub vesiniku aatomi n-dale orbiidile n de`Broglie lainepikkust. Relativistlik kvantmehaanika Kuna valguse kiirus vaakumis on looduse piirkiirus, siis esmapilgul tundub, et osakeste teleportreerumised ajas ja ruumis võimaldavad ületada valguse kiirust vaakumis või lihtsalt ei allu selle looduse piirkiirusele. Keha teleportatsioon ajas ja ruumis on ju võrdne keha lõpmatu suure kiirusega. Kuid sellegipoolest osakesed siiski alluvad relatiivsusteooria nõuetele. Näiteks mitte ükski keha Universumis ei ületa valguse kiirust vaakumis. Kuid seevastu sõltumatute protsesside jada võib liikuda mistahes kiirusel ( isegi kiiremini kui valguse kiirus vaakumis ). Osakesed küll 102