=
milles ε on dielektriline läbitavus ja R 1 on sisemise sfääri raadius ning R 2 on välimise sfääri raadius. Viimane Nordströmi raadiuse võrrand kehtib ainult kerakujulise keha jaoks. Raadius R näitab sündmuste horisondi lõkspinna suurust:
=(
milles on lõkspinna suurus, mis antud juhul on kera pindala kujuga S. Kuid kera pindala S asemele võime valemis panna mistahes kujuga pindala valemi ja seega saame välja kirjutada palju üldisema võrrandi:
=(
Viimane valem kehtib mistahes pindala kujuga keha korral ehk tegemist on üldise valemiga, mille korral võib aegruumi lõkspind olla mistahes kujuga ja suurusega. Siinjuures peab arvestama seda, et keha elektrimahtuvus C peab vastama lõkspinna S kujule. Näiteks kerakujulise keha korral tekib sfäärilise kujuga lõkspind. Sellisel juhul peame kasutama kera mahtuvuse valemeid, et leida kera laengu suurus.
Aegruumi lõkspinna kuju sõltub elektrilaengu poolt tekitatud välja ekvipotentsiaalpinna kujust. Ekvipotentsiaalpinna tiheduse muutumine määrab ära selle, et kas elektrivälja tugevus nõrgeneb või suureneb. Väljatugevus on seotud omakorda elektrijõuga. Elektrivälja tugevus E kahe paralleelse, ühesuuruselt ja erimärgiliselt laetud tasase pinna vahel ehk laengute polarisatsiooni korral on
avaldatav järgmiselt: =,( =). Kui pindade lineaarmõõtmed on pindadevahelisest kaugusest palju palju suuremad, siis saame kasutada järgmist väljatugevuse valemit: =.
Valemites on U laetud pindade vaheline pinge, d on pindade vaheline kaugus, q mõlema pinna laengu suurus, S on mõlema pinna pindala ja ε on pindade vahel eksisteeriva aine dielektriline läbitavus. Valemi = nimetajas puudub suurus 4π, sest välja jõujooned ei ristu enam sfääri pinnaga nagu on seda punktlaengu korral, vaid tasandiga. Suurus 4π esineb sfääri( ehk kera) pindala valemis. Elektrivälja tugevus punktlaengu Q korral on see aga järgmine: = ehk
=. Punktlaengu q elektrivälja tugevus E on pöördvõrdeline kera pindalaga 4πr2, kus r on
elektrilaengu kaugus kera pinnast. See tähendab ka seda, et elektrivälja tugevuse E korrutis kera pindalaga on arvuliselt võrdne selles keras eksisteeriva laengu suurusega. Seda on võimalik üldistada mistahes kujuga pinna jaoks. Sarnaselt väljatugevusega avaldub elektrivälja potentsiaal φ
punktlaengu Q korral järgmiselt: =. Kuid elektrivälja potentsiaal φ homogeense elektrivälja
korral( näiteks kahe erimärgiliselt laetud tasandi vahel) on φ = Ed ehk φ = Er. Jõu ja proovikeha laengu suhe on mingis kindlas väljapunktis alati muutumatu:
milles
= = =
Positiivselt laetud keha elektrivälja jõujooned ei lähe lõpmatusse ja negatiivse laenguga keha välja jõujooned ei tule lõpmatusest. See on sellepärast nii, et positiivse laengu jaoks on kuskil
163