kasutatakse aegruumi kõveruse matemaatiliseks kirjeldamiseks ka tensoreid. Näiteks kahe punkti vahelist kaugust ds kõveras aegruumis kirjeldavad ka tensorid:
=, kus =.
Vektorid piirduvad ainult kolmemõõtmelisusega, kuid enamamõõtmelisi „ objekte“( nagu näiteks neljamõõtmelist aegruumi) kirjeldavad juba tensorid. Seetõttu on tensormatemaatika samuti kõverate aegruumide üheks peamiseks matemaatiliseks kirjeldusviisiks.
Üldrelatiivsusteoorias esineb peamiselt kahte liiki võrrandeid. Ühed on need, mis kirjeldavad kahe punkti vahelise kauguse muutumist kõveras aegruumis( võrreldes tasase aegruumiga). Need meetrilised võrrandid kirjeldavad ka seda, et kuidas muutuvad aeg ja ruum taevakeha tsentrile lähenemisel. Teised on aga need, mis kirjeldavad mateeria mõju aegruumile. Need tensorvõrrandid kirjeldavad seda, et keha mass kõverdab ümbritsevat aegruumi ja aegruumi kõverdus omakorda mõjutab kehade liikumisi selles. Just aine ja energia eksisteerimine mõjutavad aegruumi geomeetriat ehk meetrikat. Samuti ka selle aine või energia liikumine aegruumis. Seda kirjeldab matemaatiliselt näiteks A. Einsteini võrrand:
( = +
Riemanni geomeetria tensorid kirjeldavad Riemanni mitteeukleidilist ehk kõverdunud ruumi. Meetriline tensor on vektorist palju üldisem ja keerulisem. Vektor näitab ainult suunda ja pikkust. Meetriline tensor näitab punktide omavahelisi kaugusi kõverdunud ruumides. Kahemõõtmelise, kolmemõõtmelise ja neljamõõtmelise ruumi meetrilisel tensoril on vastavalt kolm, kuus ja kümme sõltumatut komponenti. Riemanni tensorid ja Einsteini ning Grossmanni poolt kohandatud, Itaalia matemaatikute Gregorio Ricci-Carbasto ja Teulli Levi-Civita tensorid on kovariantsed. Ruumi ja aja koordinaatsüsteemide suvaliste muutuste või pöörete korral jäävad nende tensorite komponentide omavahelised suhted samasugusteks. Füüsikaliselt väljendub see selles, et kuna Universum on kõikjal üks ja sama, siis seega peavad loodusseadused olema samasugused ka erinevates ehk kõikides koordinaatsüsteemides. Einsteini gravitatsiooni väljavõrrandid on:
= =.
Tensor G on Einsteini tensor, mis koosneb Ricci tensori R ja meetrilise tensori g kombinatsioonist. Mateeria liikumist gravitatsiooniväljas kirjeldab tensor T. Indeksid μ ja ν on tensorite erinevad komponendid. Einsteini tensor G näitab seda, et kuidas füüsikalised kehad kõverdavad ümbritsevat aegruumi geomeetriat. Einsteini võrrand näitab seda, et kuidas kehad kõverdavad aegruumi ja kuidas sama aegruumi kõverus paneb kehad liikuma.
„ Meetrilise formalismi esitusviis on üldrelatiivsusteooria „ klassikaline“ esitus. Kuid seda klassikalist formalismi on täiustatud. On välja arendatud üldrelatiivsusteooria matemaatiliste aluste üldiselt komplitseeritumad käsitlused. Need aga lähtuvad üldisematest matemaatilistest kontseptsioonidest, mõistetest. Sellisel juhul alustatakse tavaliselt aegruumi kui diferentseeruva muutkonna lokaalsete pseudoeukleidiliste puuteruumide, nendest moodustatud puutujavektorkonna, puuteruumis Lorentzi rühma taandamatute esitustega defineeritavate matemaatiliste suuruste( spiinorite, tensorite) vaatlemisest. Pärast seda arvestatakse ka kogu tänapäeva diferentsiaalgeomeetriat. Kasutatakse topoloogilisi meetodeid, mitmeid eripäraseid ja efektiivseid arvutusmeetodeid. Näiteks Cartani välisdiferentsiaalvormide arvutust. Seejärel see kõik rakendatakse aegruumi( kui kõvera Riemanni ruumi) omaduste detailse uurimise teenistusse.
117