Maailmataju 5 veebruar 2014 | Page 95

saame kätte Christoffeli koefitsendid: 2-ruumi Riemanni-Christoffeli tensori ainsa sõltumatu komponendi R1212 saame valemist Seega on võimalik järeldada seda, et kerapind kuulub kõverate ruumide hulka. „Selline esitusviis on üldrelatiivsusteooria „klassikaline“ esitus ehk nn meetriline formalism. Kuid seda klassikalist formalismi on täiustatud. On välja arendatud üldrelatiivsusteooria matemaatiliste aluste üldiselt komplitseeritumad käsitlused. Need aga lähtuvad üldisematest matemaatilistest kontseptsioonidest, mõistetest. Sellisel juhul alustatakse tavaliselt aegruumi kui diferentseeruva muutkonna lokaalsete pseudoeukleidiliste puuteruumide, nendest moodustatud puutujavektorkonna, puuteruumis Lorentzi rühma taandamatute esitustega defineeritavate matemaatiliste suuruste ( spiinorite, tensorite ) vaatlemisest. Pärast seda arvestatakse ka kogu tänapäeva diferentsiaalgeomeetriat. Kasutatakse topoloogilisi meetodeid, mitmeid eripäraseid ja efektiivseid arvutusmeetodeid. Näiteks Cartani välisdiferentsiaalvormide arvutust. Seejärel see kõik rakendatakse aegruumi ( kui kõvera Riemanni ruumi ) omaduste detailse uurimise teenistusse. Näiteks nn. spiinorformalism on tensorformalismist fundamentaalsem käsitlusviis. See formuleerib üldrelatiivsusteooriat spiinorite keeles. Kuid spiinorformalismilt on võimalik üle minna tensorformalismile. Seda on võimalik arendada k