Maailmataju 31 Jan. 2016 | Page 136

teleportatsioon. Seetõttu ongi elektroni liikumine aatomis tõenäosuslik. Osakese liikumistrajektoori ei ole. 5. Energia jäävuse seaduse järgi ei kao ega teki juurde energiat. Kui aga keha teleportreerub ühest ruumipunktist teise, siis jääb mulje, et sellest samast kehast tekib „hetkeks“ kaks samasugust keha, sest teleportreerumine ruumis ei võta enam aega. Keha ( ehk energia ) juurde tekkimine mitte millegi arvelt on vastuolus energia jäävuse seadusega. Kuna keha teleportreerub ruumis lõpmata väikese aja perioodi jooksul ja seega eksisteerib üks keha kahes erinevas ruumipunktis korraga lõpmata väikese ajaperioodi jooksul, siis seega energia jäävuse seaduse rikkumist ei ole otseselt tuvastatav. Nendest postulaatidest ongi võimalik järeldada seda, et osake teleportreerub ajas ja ruumis pidevalt ning seepärast ei ole võimalik täpselt ette teada seda, et millisesse ruumipunkti osake teleportreerub ja millisesse ajahetke. Seetõttu arvutatakse välja tõenäosused iga võimaliku ruumipunkti ja ajahetke kohta, kuhu osake ( teleportreerumisel ) jõuda võib. Kõik need tõenäosused on nullist erinevad ja summeerides kõik need tõenäosused saame arvuks 100 %. Võtame näiteks tuntud pilu katse. Osakese tõenäosusjaotust ajas ja ruumis mõjutabki see pilu, millest osake läbi läheb. See tõenäosusjaotus ajas ja ruumis on nagu vee laine. Tegemist on osakese tõenäosuslainega, mis levib ajas ja ruumis. See, mis juhtub vee lainega pilu läbimisel, juhtub sama ka osakese tõenäosuslainega, mis läbib samuti pilu. Tulemuseks on osakese laineline käitumine. Joonis 37 Tõenäosus ainult teatud punktis (x), mitte kogu ruumalas (y). Osakese ajas ja ruumis levivat tõenäosuslainet ( või lihtsalt osakese füüsikalist olekut ) kirjeldab matemaatiliselt lainefunktsioon: = ( ja selle lainefunktsiooni mooduli ruut = annabki tõenäosustiheduse osakese asukoha leidmiseks ajahetkel t. ψ* on ψ kaaskompleks. Sellest tulenevalt saame leida osakese asukoha tõenäosuse ruumielemendis dV: = Selle reaalseks näiteks vaatleme järgnevalt mingi suvaliselt valitud pinna valgustatust. Valguslaine elektrivektori ruudu keskväärtus mõõdab valguse intensiivsust. Valgualaine amplituudi ruut on laineteooria järgi võrdeline valgustatusega pinna mingisuguses punktis, kuid kvantteooria järgi on valgustatus ( ja seega valguslaine amplituudi ruut ) võrdeline hoopis valguse osakeste voo tihedusega. Valgusosake ehk footon kannab endas energiat ja impulsi. Footoni langemisel mingis pinna punktis vabaneb seal energia. Footoni langemist pinna mingisugusesse punkti määrab ära tõenäosus, mis sõltub valguslaine amplituudi ruudu väärtusest. Footoni leidmise tõenäosust ruumalas dV kirjeldab diferentsiaalvõrrand: dW = χA2dV, kus χ on võrdetegur ja A on valguslaine 99