Maailmataju 31 Jan. 2016 | Page 126

= ( + + ( järgi avaldada nõnda: = ≠ Seega on võimalik järeldada seda, et kerapind ehk sfäär kuulub kõverate ruumide hulka. ( Koppel 1975, 123-127 ). Sfääri raadiuse on võimalik välja arvutada näiteks sfääri pinnal sooritatud mõõtmistest. Näiteks oletame seda, et meil on sfäär ja selle peal on kolmnurk ABC, mille nurgad on α, β ja γ. Joonis 33 Kolmnurk kera pinnal. Kolmnurga ABC küljed on suurringjoonte kaared. Kolmnurga külje AB puutuja suunaline vektor v0 on antud punktis A. Kui aga see vektor liigub ( pseudoparalleelselt ) mööda külge AB, siis jääb see vektor külje AB puutuja suunaliseks seni kuni see jõuab punkti B ( asend v1 ). Küljega BC moodustab see nurga π – β. Mööda joont BC liikudes ( pseudoparalleelselt ), jääb nurk π – β kuni punkti C jõudmiseni ( asend v2 ). Punktis C ehk asendis v2 moodustab ta küljega AC nurga π - β – γ. Selline nurk jääb seni kuni ta jõuab tagasi punktini A ( asend vk ). Vektoriga v0 moodustab ta sellises asendis nurga = ( = + + kus nurk ψ on kolmnurga ABC sfääriline ekstsess ja radiaanides on see = kus S on kolmnurga ABC pindala ja R on sfääri raadius. Kui aga vektorit liigutada pseudoparalleelselt suvalist joont mööda, siis viimane valem jääb ikkagi kehtima. Kui sooritada mõõtmisi sfääri pinnal, siis on võimalik välja arvutada sfääri raadiuse. ( Silde 1974, 142-143 ). 89