Maailmataju 31 Jan. 2016 | Page 123

„Meetrilise formalismi esitusviis on üldrelatiivsusteooria „klassikaline“ esitus. Kuid seda klassikalist formalismi on täiustatud. On välja arendatud üldrelatiivsusteooria matemaatiliste aluste üldiselt komplitseeritumad käsitlused. Need aga lähtuvad üldisematest matemaatilistest kontseptsioonidest, mõistetest. Sellisel juhul alustatakse tavaliselt aegruumi kui diferentseeruva muutkonna lokaalsete pseudoeukleidiliste puuteruumide, nendest moodustatud puutujavektorkonna, puuteruumis Lorentzi rühma taandamatute esitustega defineeritavate matemaatiliste suuruste ( spiinorite, tensorite ) vaatlemisest. Pärast seda arvestatakse ka kogu tänapäeva diferentsiaalgeomeetriat. Kasutatakse topoloogilisi meetodeid, mitmeid eripäraseid ja efektiivseid arvutusmeetodeid. Näiteks Cartani välisdiferentsiaalvormide arvutust. Seejärel see kõik rakendatakse aegruumi ( kui kõvera Riemanni ruumi ) omaduste detailse uurimise teenistusse. Näiteks nn. spiinorformalism on tensorformalismist fundamentaalsem käsitlusviis. See formuleerib üldrelatiivsusteooriat spiinorite keeles. Kuid spiinorformalismilt on võimalik üle minna tensorformalismile. Seda on võimalik arendada kasutades globaalseid koordinaate, mis annabki meetrilise formalismi. Meetriliselt formalismilt on omakorda võimalik üle minna tensorformalismile. Näiteks aegruumi intervalli kirjeldavad samaaegselt nii meetrika kui ka tensorid: = = kus rμ ⟶ ( x0 , x1, x2 , x3 ) = ( ct, x, y, z ) ja = = , . Kui aga koordinaadid võrduvad ( x0 , x1, x2 , x3 ) = ( ct, r, θ, φ ), siis saame = = Kuna meetriline tensor g saab võrduda: maatriksina ( = , siis võib seda avaldada ka järgmise =( = Seda kirjeldab meile põhjalikumalt juba Minkovski meetrika. Teise võimalusena saab kasutada aga lokaalseid reepereid iseloomustavaid suurusi – selline formuleerimisviis on tegelikult üldisem. See kujutab endast üldrelatiivsusteooria esitust reeperformalismis ehk tetraadformalismis. Reeperformalismi erijuht ongi tegelikult selline meetriline formalism, kui kasutada holonoomseid reepereid ehk koordinaatreepereid.“ ( Koppel 1975, 123-127 ). Järgnevalt hakkamegi nüüd lähemalt vaatama neid võrrandeid ehk matemaatilisi formalisme, mis kirjeldavad kõveraid aegruume ehk gravitatsiooniväljasid. 86