InnoHEALTH magazine Volume 4 issue 1 | Page 38

Round-the-clock data collected from bioelectronic devices could replace the present time-point investigations and lead to better management of health condition of patients. In addition, data from multiple people can help develop artificial intelligence algorithms and predictive tools. Such tools have already started showing analytic performance similar, and sometimes better than manual inspection by a specialist In next few years, health monitoring, neural prosthetics and biochemical prosthetics are expected to drive major developments in this space. Although the monitoring devices have already started testing the market in niche patient segments, it may take the implants another 5-10 years to reach health centres as they make their way through developmental and regulatory checkpoints. By India Science Wire Volume 4 | Issue 1 | January-March 2019 39 physician. In countries like India, that suffer from shortage of qualified doctors in remote areas, such devices have immense potential. However, data standardization, data security and privacy protection must be addressed and regulated before rolling out such interventions. IIT Kharagpur is setting up a Bioelectronics Innovation Laboratory that aims to develop battery-free implantable miniaturized engineering systems for treatment of brain, nerve, muscle or spinal cord disorders by restoring missing neural functions. The proposed coin sized implant will be powered wirelessly and will combine brain activity testing like electrical simulation, bio-potential recording and neuro-chemical sensing for use in rehabilitation and prosthesis. In India, a lot of work has now started in this sphere. Results from a few studies have started trickling in, with most of them in development or early stages of testing. Research findings in the journal Scientific Reports by researchers from IIT Kharagpur earlier this year reported bioimpedimetric analysis of cancer cells that efficiently distinguishes their aggressiveness by measuring electric field impedance in laboratory conditions. In another study published in the journal Sensors earlier this year, researchers at IIT Delhi developed a novel low-cost prosthesis based on sensors to enable normal gait kinematics, i.e. motion analysis, for lower limb amputees. To cater to the large patient numbers, care models are transitioning from hospital- centric care to in-home care. Hospital-based interventions will increasingly cater to acute cases only. Real-time monitoring of a person’s physiological and biophysical parameters, and relaying health information to care providers becomes essential in achieving this. stimulate cardiac or brain tissues to treat conditions like irregular heartbeat, certain motor disorders and cognitive impairments. Other implants like, artificial retina and cochlear implants, restore functionalities of damaged tissues. These interventions, being referred to as ‘Bioceuticals’, could restructure conventional therapeutic options for more efficient outcomes.