InnoHEALTH magazine Volume 4 issue 1 | Page 37

Integrating technologies to design better healthcare interventions A ge and disease demographics are changing rapidly across the globe. The number of people above 65 years is expected to double and constitute nearly 17% of the world population by 2050. The chronic disease incidence rate is expected to rise to 57% by 2020. These figures highlight the need to enhance quality and efficiency of care with quick response time to health-related emergencies. Ideas that cut across medicine, biological and engineering sciences, material design, and system innovations are converging to address these challenges. The shift is going to be from legacy products like pacemaker and imaging systems to wearables for general fitness tracking and gait monitoring. Taking a step further, researchers are now developing and testing more focused miniaturized bioelectronic devices for By Dr. Swati Subodh 38 Volume 4 | Issue 1 | January-March 2019 recording and analysing health data for detecting determinants of health and for medical interventions. In diagnostics, non-invasive bioelectronic skin sensors that measure analytes in biofluids like saliva, tears and sweat are showing promising results in assessing stress levels, and detecting conditions like diabetes and cystic fibrosis. Researchers from the All India Institute of Medical Sciences (AIIMS) and Indian Institute of Technology (IIT) Delhi have developed a biosensor for detecting glucose in saliva samples for diabetes detection. The results can directly be viewed on the user’s smartphone.Many such studies are now underway in India. Conductive gels and patch sensors resembling fashion accessories are also being developed to record cardiac, brain and muscle activity which could complement the traditional blood analysis and clinical examinations. Mechano-acoustic skin sensors that measure speech patterns and internal body sounds, like swallowing, are being explored to quantitatively measure impact of rehabilitation in patients, such as those recovering from stroke. In treatment, miniscule implants placed inside the body can cross the blood- brain barrier and deliver drug directly at the target site, even in hard-to-reach internal organs. Such devices have shown promising results in laboratory settings in reducing side effects and toxicity while increasing overall drug efficacy. This could also ensure patient compliance, a step further to the recently approved digital pill, especially in patients on long care and those with compromised cognition. Certain implants can also electrically