Ingeniería, negocios e innovación Vol. 1, No. 1 | Page 45

Moreno Rubio, Cuevas & Tinjacá Soler www.unitec.edu.co Figura 13. Red de entrada del amplificador clase F inverso con líneas de transmisión reales 1 G R M18 C12 P artNumber=G R M1885C1H221J A01 1 V IAG ND V5 S ubs t="MS ub1" D=0. 5 mm T =0. 035 mm R ho=1. 0 W =0. 625 mm 2 1 1 2 2 1 2 MLIN MS T E P T L64 S tep21 S ubs t="MS ub1" S ubs t="MS ub1" W =1 mm W 1=1 mm L=0. 5 mm W 2=0. 8 mm 1 1 2 4 2 MS T E P S tep14 S ubs t="MS ub1" W 1=1 mm W 2=0. 8 mm 3 1 1 MLIN T L29 S ubs t="MS ub1" W =1 mm L=0. 5 mm 1 2 1 1 MLIN T L63 S ubs t="MS ub1" W =1 mm L=0. 5 mm 2 2 2 1 1 MLIN T L57 S ubs t="MS ub1" W =0. 7 mm 1 L=2 mm 2 1 3 2 V in 1 2 P _1T one I_P robe PORT 1 I_In Num=1 Z =50 O hm 2 P =polar(dbmtow(P av), 0) 1 F req=3. 5 G Hz 1 2 2 2 1 1 1 MLIN T L65 S ubs t="MS ub1" W =1 mm L=0. 5 mm MS T E P S tep23 S ubs t="MS ub1" W 1=1 mm W 2=0. 8 mm V IAG ND V6 S ubs t="MS ub1" D=0. 5 mm T =0. 035 mm R ho=1. 0 W =0. 625 mm 1 2 1 MLIN T L61 S ubs t="MS ub1" W =1 mm L=0. 5 mm MCR O S O Cros 5 S ubs t="MS ub1" W 1=1 mm W 2=0. 7 mm W 3=1 mm W 4=0. 7 mm 2 1 2 2 MS T E P S tep16 S ubs t="MS ub1" W 1=1 mm W 2=0. 8 mm 1 2 1 1 MLIN T L39 S ubs t="MS ub1" W =1 mm L=0. 5 mm MS T E P S tep24 S ubs t="MS ub1" W 1=1 mm W 2=0. 8 mm V IAG ND V7 S ubs t="MS ub1" D=0. 5 mm T =0. 035 mm R ho=1. 0 W =0. 625 mm MLIN T L34 S ubs t="MS ub1" W =1. 68 mm 2 L=2. 5 mm 1 MS T E P S tep18 S ubs t="MS ub1" W 1=1. 68 mm 2 W 2=0. 8 mm 1 R R5 R =100 O hm 2 2 1 1 MS T E P S tep20 S ubs t="MS ub1" W 1=1. 68 mm W 2=0. 8 mm MS T E P S tep9 S ubs t="MS ub1" W 1=1. 68 mm W 2=0. 8 mm 2 1 Va r E qn MS T E P S tep11 S ubs t="MS ub1" W 1=1. 68 mm W 2=0. 8 mm 2 2 1 1 1 MT E E _ADS T ee11 S ubs t="MS ub1" W 1=0. 7 mm W 2=1. 68 mm W 3=1. 68 mm MLIN T L59 S ubs t="MS ub1" W =1. 68 mm L=2. 5 mm V AR V AR 2 LA=8. 35 {t} W A=1. 1 {t} G R M18 C3 P artNumber=G R M1885C1H3R 3CZ 01 MLIN T L28 S ubs t="MS ub1" W =1. 68 mm 2 L=2. 5 mm 3 1 G R M18 C2 P artNumber=G R M1885C1H470J A01 1 22 1 1 MS T E P S tep10 S ubs t="MS ub1" W 1=1. 68 mm W 2=0. 8 mm 1 2 MS T E P S tep15 S ubs t="MS ub1" W 1=1 mm W 2=0. 8 mm G R M18 C13 P artNumber=G R M1885C2A101J A01 1 MLIN T L60 S ubs t="MS ub1" W =1 mm L=0. 5 mm MT AP E R T aper2 S ubs t="MS ub1" W 1=1. 68 mm 1 W 2=0. 7 mm 1 L=3 mm MLIN T L35 S ubs t="MS ub1" W =1. 68 mm 2 L=2. 5 mm 1 MS T E P S tep19 S ubs t="MS ub1" W 1=1. 68 mm 2 W 2=0. 8 mm 1 R R6 R =100 O hm MLIN T L10 S ubs t="MS ub1" W =1. 68 mm L=5 mm 1 2 1 1 2 MLIN T L62 S ubs t="MS ub1" W =1 mm L=0. 5 mm 2 2 2 2 1 4 MS T E P S tep17 S ubs t="MS ub1" W 1=1 mm W 2=0. 8 mm MS T E P S tep22 S ubs t="MS ub1" W 1=1 mm W 2=0. 8 mm G R M18 C11 P artNumber=G R M1885C1H331J A01 2 G R M18 C16 P artNumber=G R M1885C2A100J A01 V IAG ND V8 S ubs t="MS ub1" D=0. 5 mm T =0. 035 mm R ho=1. 0 W =0. 625 mm MCR O S O Cros 4 S ubs t="MS ub1" W 1=1 mm W 2=0. 7 mm W 3=1 mm W 4=0. 7 mm V _DC S R C3 V dc=-2. 7 V 2 2 MLIN T L56 S ubs t="MS ub1" W =0. 7 mm {t} L=17. 3 mm {t} 1 1 2 1 MLIN T L44 S ubs t="MS ub1" W =1. 68 mm L=2 mm MS T E P S tep29 S ubs t="MS ub1" W 1=1. 68 mm W 2=0. 7 mm MCR O S O Cros 6 S ubs t="MS ub1" W 1=1. 68 mm W 2=W A mm W 3=1. 68 mm W 4=W A mm 2 2 2 MS T E P S tep12 S ubs t="MS ub1" W 1=1. 68 mm W 2=1. 6 mm 1 1 1 2 2 2 1 MLIN MS T E P T L58 S tep13 S ubs t="MS ub1" S ubs t="MS ub1" W 1=1. 6 mm W =1. 68 mm W 2=1. 68 mm L=2 mm R R4 R =20 O hm {t} 1 MLE F T L23 S ubs t="MS ub1" W =W A mm L=LA mm 3 4 1 1 2 1 2 I_P robe I_In1 MLIN T L21 S ubs t="MS ub1" MLE F W =1. 68 mm T L24 L=0. 5 mm S ubs t="MS ub1" W =W A mm L=LA mm Figura 14. Amplificador clase F inverso con líneas de transmisión ideales 2 Va r E qn Va r E qn 1 VAR VAR 8 F =79.7 H =12.2 { t} G =174.3 1 Vin 1 2 1 2 1 I_Probe P_ 1T one I_In PO R T 1 D C _Bloc k N um=1 D C _Bloc k 1 Z=50 O hm 2 P=pola r( dbmtow( Pa v ) ,0) 1 F req=3.5 G H z 1 1 T L IN T L 27 Z=50.0 O hm E =77.31 2 F =3.5 G H z R R1 R =20 O hm 2 T L IN T L 21 Z=50.0 O hm E =0.1 F =3.5 G H z 1 1 2 V_ D C SR C 1 T L IN Vdc =-2.7 V T L 20 Z=50.0 O hm 2 1 E =90 F =3.5 G H z 2 1 2 C C6 C =13.0 pF 1 1 T L IN T L 19 Z=50.0 O hm E =90 2 F =3.5 G H z 2 T L IN T L 24 Z=50.0 O hm E =H F =3.5 G H z 1 2 T L IN T L 18 Z=50.0 O hm E =45 F =3.5 G H z2 2 1 T L IN T L 23 Z=50.0 O hm E =-H +180 F =3.5 G H z C G H 40010F _r6_C G H 40_r6 X1 tc a s e=25 c rth=5.0 4 Cre e CGH4 0 0 1 0 F 3 1 1 2 L L5 L =-0.45 nH R= VD i 1 2 1 Conclusiones 2 1 I_Probe C I_D i C5 C =-1.46 pF VAR VAR 9 A=87.58 B=109.79 C =134.9 D =54.9 1 1 2 1 L C L4 C4 L =0.45 nH C =1.46 pF R= 1 1 2 T L IN TL1 Z=50.0 O hm E =90 F =3.5 G H z 2 1 2 T L IN TL4 Z=50.0 O hm E =A F =3.5 G H z 1 1 I_Probe I_D c T L IN TL2 Z=50.0 O hm E =45 F =3.5 G H z T L IN TL3 Z=50.0 O hm E =90 2 F =3.5 G H z 1 2 2 T L IN T L 12 Z=50.0 O hm E =C F =3.5 G H z V_D C SR C 2 Vdc =28.0 V 2 1 1 1 Vdc 1 T L IN T L 13 Z=50.0 O hm E =D 2 F =3.5 G H z 2 T L IN T L 14 Z=50.0 O hm E =E F =3.5 G H z 1 2 T L IN T L 15 Z=46.054 O hm E =90 F =3.5 G H z 1 2 D C _Bloc k D C _Bloc k 2 1 2 I_Probe I_O ut Vout 1 2 T erm T erm2 N um=2 Z=50 O hm 1 Con el diseño propuesto se logra que las formas de obtenidos se comprueba que el diseño con líneas de y las formas de onda de voltaje a una señal sinodal líneas de transmisión reales; además ambos diseños onda de corriente se asemejen a una señal cuadrada truncada, condiciones que posibilitan que el diseño sea un PA clase F inverso. Con base en los resultados transmisión ideales sirve de guía para el diseño con poseen alta eficiencia, la cual es característica importante en el diseño de PA para circuitos de radiofrecuencia. Ing. negocios innov. | ene.-jun. | 2015 | Vol. 1 | No. 1 | pp. 33-44 43