Moreno Rubio, Cuevas & Tinjacá Soler
www.unitec.edu.co
Figura 13. Red de entrada del amplificador clase F inverso con líneas de transmisión reales
1
G R M18
C12
P artNumber=G R M1885C1H221J A01
1
V IAG ND
V5
S ubs t="MS ub1"
D=0. 5 mm
T =0. 035 mm
R ho=1. 0
W =0. 625 mm
2
1 1
2
2
1
2
MLIN
MS T E P
T L64
S tep21
S ubs t="MS ub1" S ubs t="MS ub1"
W =1 mm
W 1=1 mm
L=0. 5 mm
W 2=0. 8 mm
1
1
2
4
2
MS T E P
S tep14
S ubs t="MS ub1"
W 1=1 mm
W 2=0. 8 mm
3
1
1
MLIN
T L29
S ubs t="MS ub1"
W =1 mm
L=0. 5 mm
1
2
1
1
MLIN
T L63
S ubs t="MS ub1"
W =1 mm
L=0. 5 mm
2
2
2
1
1
MLIN
T L57
S ubs t="MS ub1"
W =0. 7 mm
1 L=2 mm
2
1 3
2
V in
1 2
P _1T one I_P robe
PORT 1
I_In
Num=1
Z =50 O hm
2 P =polar(dbmtow(P av), 0)
1 F req=3. 5 G Hz
1
2
2
2
1
1
1
MLIN
T L65
S ubs t="MS ub1"
W =1 mm
L=0. 5 mm
MS T E P
S tep23
S ubs t="MS ub1"
W 1=1 mm
W 2=0. 8 mm
V IAG ND
V6
S ubs t="MS ub1"
D=0. 5 mm
T =0. 035 mm
R ho=1. 0
W =0. 625 mm
1
2
1
MLIN
T L61
S ubs t="MS ub1"
W =1 mm
L=0. 5 mm
MCR O S O
Cros 5
S ubs t="MS ub1"
W 1=1 mm
W 2=0. 7 mm
W 3=1 mm
W 4=0. 7 mm
2
1
2 2
MS T E P
S tep16
S ubs t="MS ub1"
W 1=1 mm
W 2=0. 8 mm
1
2
1
1
MLIN
T L39
S ubs t="MS ub1"
W =1 mm
L=0. 5 mm
MS T E P
S tep24
S ubs t="MS ub1"
W 1=1 mm
W 2=0. 8 mm
V IAG ND
V7
S ubs t="MS ub1"
D=0. 5 mm
T =0. 035 mm
R ho=1. 0
W =0. 625 mm
MLIN
T L34
S ubs t="MS ub1"
W =1. 68 mm
2 L=2. 5 mm
1
MS T E P
S tep18
S ubs t="MS ub1"
W 1=1. 68 mm
2 W 2=0. 8 mm
1
R
R5
R =100 O hm
2
2
1
1
MS T E P
S tep20
S ubs t="MS ub1"
W 1=1. 68 mm
W 2=0. 8 mm
MS T E P
S tep9
S ubs t="MS ub1"
W 1=1. 68 mm
W 2=0. 8 mm
2
1
Va r
E qn
MS T E P
S tep11
S ubs t="MS ub1"
W 1=1. 68 mm
W 2=0. 8 mm
2
2
1
1
1
MT E E _ADS
T ee11
S ubs t="MS ub1"
W 1=0. 7 mm
W 2=1. 68 mm
W 3=1. 68 mm
MLIN
T L59
S ubs t="MS ub1"
W =1. 68 mm
L=2. 5 mm
V AR
V AR 2
LA=8. 35 {t}
W A=1. 1 {t}
G R M18
C3
P artNumber=G R M1885C1H3R 3CZ 01
MLIN
T L28
S ubs t="MS ub1"
W =1. 68 mm
2 L=2. 5 mm
3
1
G R M18
C2
P artNumber=G R M1885C1H470J A01
1
22
1 1
MS T E P
S tep10
S ubs t="MS ub1"
W 1=1. 68 mm
W 2=0. 8 mm
1
2
MS T E P
S tep15
S ubs t="MS ub1"
W 1=1 mm
W 2=0. 8 mm
G R M18
C13
P artNumber=G R M1885C2A101J A01
1
MLIN
T L60
S ubs t="MS ub1"
W =1 mm
L=0. 5 mm
MT AP E R
T aper2
S ubs t="MS ub1"
W 1=1. 68 mm
1 W 2=0. 7 mm
1 L=3 mm
MLIN
T L35
S ubs t="MS ub1"
W =1. 68 mm
2 L=2. 5 mm
1
MS T E P
S tep19
S ubs t="MS ub1"
W 1=1. 68 mm
2 W 2=0. 8 mm
1
R
R6
R =100 O hm
MLIN
T L10
S ubs t="MS ub1"
W =1. 68 mm
L=5 mm
1
2 1
1
2
MLIN
T L62
S ubs t="MS ub1"
W =1 mm
L=0. 5 mm
2
2
2
2
1
4
MS T E P
S tep17
S ubs t="MS ub1"
W 1=1 mm
W 2=0. 8 mm
MS T E P
S tep22
S ubs t="MS ub1"
W 1=1 mm
W 2=0. 8 mm
G R M18
C11
P artNumber=G R M1885C1H331J A01
2
G R M18
C16
P artNumber=G R M1885C2A100J A01
V IAG ND
V8
S ubs t="MS ub1"
D=0. 5 mm
T =0. 035 mm
R ho=1. 0
W =0. 625 mm
MCR O S O
Cros 4
S ubs t="MS ub1"
W 1=1 mm
W 2=0. 7 mm
W 3=1 mm
W 4=0. 7 mm
V _DC
S R C3
V dc=-2. 7 V
2
2
MLIN
T L56
S ubs t="MS ub1"
W =0. 7 mm {t}
L=17. 3 mm {t}
1
1
2
1
MLIN
T L44
S ubs t="MS ub1"
W =1. 68 mm
L=2 mm
MS T E P
S tep29
S ubs t="MS ub1"
W 1=1. 68 mm
W 2=0. 7 mm
MCR O S O
Cros 6
S ubs t="MS ub1"
W 1=1. 68 mm
W 2=W A mm
W 3=1. 68 mm
W 4=W A mm
2
2
2
MS T E P
S tep12
S ubs t="MS ub1"
W 1=1. 68 mm
W 2=1. 6 mm
1
1 1
2
2
2
1
MLIN
MS T E P
T L58
S tep13
S ubs t="MS ub1" S ubs t="MS ub1"
W 1=1. 6 mm W =1. 68 mm
W 2=1. 68 mm L=2 mm
R
R4
R =20 O hm {t}
1
MLE F
T L23
S ubs t="MS ub1"
W =W A mm
L=LA mm
3
4
1
1
2
1 2
I_P robe
I_In1
MLIN
T L21
S ubs t="MS ub1"
MLE F
W =1. 68 mm
T L24
L=0. 5 mm
S ubs t="MS ub1"
W =W A mm
L=LA mm
Figura 14. Amplificador clase F inverso con líneas de transmisión ideales
2
Va r
E qn
Va r
E qn
1
VAR
VAR 8
F =79.7
H =12.2 { t}
G =174.3
1
Vin
1 2
1
2
1
I_Probe
P_ 1T one
I_In
PO R T 1
D C _Bloc k
N um=1
D C _Bloc k 1
Z=50 O hm
2 P=pola r( dbmtow( Pa v ) ,0)
1 F req=3.5 G H z
1
1
T L IN
T L 27
Z=50.0 O hm
E =77.31
2 F =3.5 G H z
R
R1
R =20 O hm
2
T L IN
T L 21
Z=50.0 O hm
E =0.1
F =3.5 G H z
1
1
2
V_ D C
SR C 1
T L IN
Vdc =-2.7 V
T L 20
Z=50.0
O
hm
2
1
E =90
F =3.5 G H z
2
1
2
C
C6
C =13.0 pF
1
1
T L IN
T L 19
Z=50.0 O hm
E =90
2 F =3.5 G H z
2
T L IN
T L 24
Z=50.0 O hm
E =H
F =3.5 G H z
1
2
T L IN
T L 18
Z=50.0 O hm
E =45
F =3.5 G H z2
2 1
T L IN
T L 23
Z=50.0 O hm
E =-H +180
F =3.5 G H z
C G H 40010F _r6_C G H 40_r6
X1
tc a s e=25
c rth=5.0
4
Cre e CGH4 0 0 1 0 F
3
1
1
2
L
L5
L =-0.45 nH
R=
VD i
1
2
1
Conclusiones
2 1
I_Probe
C
I_D i
C5
C =-1.46 pF
VAR
VAR 9
A=87.58
B=109.79
C =134.9
D =54.9
1
1
2
1
L
C
L4
C4
L =0.45 nH
C =1.46 pF
R=
1
1
2
T L IN
TL1
Z=50.0 O hm
E =90
F =3.5 G H z
2
1
2
T L IN
TL4
Z=50.0 O hm
E =A
F =3.5 G H z
1
1
I_Probe
I_D c
T L IN
TL2
Z=50.0 O hm
E =45
F =3.5 G H z
T L IN
TL3
Z=50.0 O hm
E =90
2 F =3.5 G H z
1
2
2
T L IN
T L 12
Z=50.0 O hm
E =C
F =3.5 G H z
V_D C
SR C 2
Vdc =28.0 V
2
1
1
1
Vdc
1
T L IN
T L 13
Z=50.0 O hm
E =D
2 F =3.5 G H z
2
T L IN
T L 14
Z=50.0 O hm
E =E
F =3.5 G H z
1
2
T L IN
T L 15
Z=46.054 O hm
E =90
F =3.5 G H z
1
2
D C _Bloc k
D C _Bloc k 2
1
2
I_Probe
I_O ut
Vout
1
2
T erm
T erm2
N um=2
Z=50 O hm
1
Con el diseño propuesto se logra que las formas de
obtenidos se comprueba que el diseño con líneas de
y las formas de onda de voltaje a una señal sinodal
líneas de transmisión reales; además ambos diseños
onda de corriente se asemejen a una señal cuadrada
truncada, condiciones que posibilitan que el diseño
sea un PA clase F inverso. Con base en los resultados
transmisión ideales sirve de guía para el diseño con
poseen alta eficiencia, la cual es característica importante
en el diseño de PA para circuitos de radiofrecuencia.
Ing. negocios innov. | ene.-jun. | 2015 | Vol. 1 | No. 1 | pp. 33-44
43