PROFIS ENGINEERING
•
row 1: V ua, y, row 1 = V ua, y, 1 + V ua, y, 2 + V ua, y, 3 + V ua, y, 4
• row 2: V ua, y, row 2 = V ua, y, 5 + V ua, y, 6 + V ua, y, 7 + V ua, y, 8
• row 3: V ua, y, row 3 = V ua, y, 9 + V ua, y, 10 + V ua, y, 11 + V ua, y, 12
• row 4: V ua, y, row 4 = V ua, y, 13 + V ua, y, 14 + V ua, y, 15 + V ua, y, 16
Figure 4.4.2( b).
Reference Figure 4.4.2( b) [ 23 ]. It shows the parameters that will be considered with respect to concrete breakout failure towards the y- edge. The concrete breakout failure surfaces are assumed to develop from each anchor row. Based on the spacing between rows, ACI 318 provisions could be extrapolated as shown below. Reference page 23 for information on shear load parameters.
Consider Case 1 / Case 2
• The spacing( s y12) between row 1 and row 2 equals c a1, row 1
• A complete failure surface can develop from row 1 and row 2.
• The spacing( s y23) between row 2 and row 3 is less than c a1, row 1
• The failure surface for row 3 will merge with the failure surface for row 2.
• The spacing( s y34) between row 3 and row 4 is greater than c a1, row 1
• A complete failure surface can develop from row 4.
• Case 1 / Case 2 applies for the interaction between row 1, row 2 and row 4.
• V ua, y is distributed proportionately between row 1, row 2 and row 4.
• V cbg, row 1 = A vc, row 1 A vc0 ψ ec, V ψ ed, V ψ c, V ψ h, V ψ parallel, V V b
• A Vc, row 1 =( c a2, x + s x12 + s x23 + s x34 + 1.5c a1, row 1)( 1.5c a1, row 1)
• V cbg, row 2 = A vc, row 2 ψ
A ec, V ψ ed, V ψ c, V ψ h, V ψ parallel, V V b vc0
• A Vc, row 2 =( c a2, x + s x12 + s x23 + s x34 + 1.5c a1, row 2)( h concrete)
• V cbg, row4 = A vc, row 4 A vc0 ψ ec, V ψ ed, V ψ c, V ψ h, V ψ parallel, V V b
• A Vc, row 4 =( c a2, x + s x12 + s x23 + s x34 + 1.5c a1, row 4)( h concrete)
October 2025 23