Demo 1 | Page 5

Classical Partition Identities and Basic Hypergeometric Series 15 B1.3. Classical generating functions. When S = N, the set of natural numbers, the corresponding generating functions may be displayed, respectively, as ∞ Y 1 1 = (q; q)∞ 1 − qm m=1 = ∞ X p(n) qn (B1.3a) n=0 ∞ Y X 1 1 = = p` (n) x` qn m (qx; q)∞ 1 − xq m=1 (−q; q)∞ = ∞ Y (−qx; q)∞ = m=1 ∞ Y (1 + qm ) = `,n≥0 ∞ X Q(n) qn (B1.3b) (B1.3c) n=0 (1 + xqm ) = m=1 X Q` (n) x` qn . (B1.3d) `,n≥0 Manipulating the ge