Current Pedorthics | May-June 2019 | Vol.51, Issue 3 | Page 29

midfoot were not included. The ability of a static postural measurement to predict dynamic midfoot function may be reduced as movement occurs across multiple joints simultaneously with individual axes of motion. The midfoot FPI measurements also concentrate on medially located structures, (talo-navicular congruence and medial arch height) however, during gait movement occurs across the entire midfoot. There are several limitations to this study that should be considered. This study was restricted to normal and pronated foot types as determined by FPI score. A supinated foot type, classified by a score -5 to 0 on the FPI scale, was not included. Due to the nature of the ordinal scale used in the FPI, i.e. evenly distributed categories and directional, it suggests that the predictive capacity of the FPI may extend to a negatively scored supinated foot type however this is currently an assumption. In this study the investigation of the effect of planar dominance, (identified by a breakdown of the FPI scores), assumed the measurement of curvature above and below the lateral malleolus to be a frontal plane measurement. In reality, the FPI scoring system identifies this as a combination of frontal and transverse plane position [9] . Therefore, this study potentially overestimates the strength of the relationship between dynamic frontal plane motion of the rearfoot and frontal plane dominance in the FPI score. Analysis was restricted to the frontal plane due to frontal plane motion of the rearfoot being adequately demonstrated by calcaneal motion allowing comparison between static measurements and dynamic function. Components of the FPI related to the static transverse plane position (assessed by palpation of the talar head) were not compared to dynamic motion as talar head motion cannot be accurately or reliably measured by skin mounted markers. There is no component of sagittal plane position included in the rearfoot FPI scoring system therefore this could not be included. Conclusions The FPI is a validated, quick and simple clinical measurement which can be easily applied. The findings of this study suggest that it may be an important and convenient screening tool in evaluation of foot function and subsequent predisposition to injury. Historically, research into the effect of foot orthoses and footwear on dynamic foot function has been hampered by difficulty in reliably classifying foot type for inclusion in studies, possibly contributing to subject-specific findings and lack of homogenous response to specific orthotic styles [17,18] . The results of this study suggest that the FPI has a strong positive relationship with maximum eversion of the rearfoot and is capable of predicting 85% of the variance in maximum eversion during the stance phase of gait. This suggests the FPI has significant predictive ability for dynamic rearfoot function which may assist in clinical screening and in the future research of the effect of orthotic prescription on foot function in specific cohorts. Positive correlations between frontal plane rearfoot measurements and maximum rearfoot eversion suggests the FPI may also have a role in identifying dominant planar components of dynamic rearfoot motion and warrants further investigation. –end Current Pedorthics | May/June 2019 27