Analytics Magazine Analytics Magazine, May/June 2014 | Page 31

shows that virtually everyone is extremely overconfident before the training (e.g., over a large number of trials, when they say they are 90 percent certain, they may have less than a 60 percent chance of being correct). But HDR also found that about 80 percent of individuals can be trained to be nearly perfectly calibrated (they are right just as often as they expect to be). In other words, they can be trained in about half a day to be as good as a bookie at putting odds on uncertain events. This skill becomes critical in the process of quantifying someone’s current uncertainty about a decision. 4. Calculating information values avoids “the measurement inversion.” A defined decision should always be the objective of measurement. Uncertain variables in such a decision have a computable expected value of information (EVI); that is, what is it worth if we had less uncertainty about this? When HDR compared the EVI to clients’ past measurement habits, virtually always what got measured and what needed to be measured were very different things. With the third edition, HDR has conducted more than 80 major decisions analysis, and the results are consistent with earlier findings: This phenomenon appears to pervade every industry and profession from software development to pharmaceuticals, A NA L Y T I C S real estate to military logistics, and environmental policy to technology startups. It appears that the intuition managers follow to determine what to measure routinely leads them astray; they tend not to measure the very things for which they have the poorest information and would therefore benefit most from more data. Hubbard calls this practice “the measurement inversion,” and it appears that the best guarantee to avoid this problem is simply to know the information values of uncertainties relevant to a decision. 5. A philosophical dilemma: Does probability describe the object of observation or the observer? When someone says, “but how do I know what the exact probability is?” they are implicitly adopting a particular definition of the word “probability.” Since the author observed the challenges some readers were having with this issue, the newest edition of “How to Measure Anything” expands more on it. We generally take a Bayesian position on the interpretation of probability – that is, probability is used to quantify the uncertainty of an observer, not a state of the thing being observed. This stands in contrast to the “frequentist” point of view, which treats a probability as a kind of idealized frequency of occurrence in some objective system. Somewhat ironically, the validity of applying subjective M A Y / J U N E 2 014 | 31