Analytics Magazine Analytics Magazine, March/April 2014 | Page 47

because of the multi-billion dollar investment and drilling decisions that are being made by the energy companies regarding where to drill, where to frack and how to frack. It calls for combining disparate computational and scientific disciplines to be able to interpret different types of data together. For example, to algorithmically interpret images (such as well logs), machine learning needs to be combined with pattern recognition, computer vision and image processing. Mixing these different disciplines provides more holistic recommendations regarding where and how to drill and frack, while reducing the chances of problems that could emerge along the way. For example, by developing detailed analytical signatures – using data from production, subsurface, completion and other sources – one can better predict performing and non-performing wells in a field. This process is supported by the prescriptive analytics technology’s ability to automatically digitize and interpret well logs to create depositional maps of the subsurface. With a better idea of where to drill, companies save invaluable resources by skipping wells that shouldn’t be drilled in the first place. At the same time, they minimize damage to that particular landscape. Prescriptive analytics can be used in other areas of oil and gas production. A NA L Y T I C S In both traditional and unconventional wells, by using data from pumps, production, completion and subsurface characteristics, one can predict failures of electric submersible pumps and prescribe actions to mitigate production loss. Apache Corp., for example, is using analytics to predict failures in pumps that pull oil out from subsurface and preempt the associated production loss from these pump failures. Another potential application of prescriptive analytics is that it can possibly predict corrosion development or cracks in pipelines and prescribe preventive and preemptive actions by analyzing video data from cameras along with other data from robotic devices called “smart pigs” inside these pipelines. Smarter decisions equal fewer resources, lower environmental impact and greater yields. Successful companies will be the ones that know how to prioritize resources to extract, produce and transport oil and gas in the most efficient and safest manner. Look for big data and prescriptive analytics to play a much bigger role in this space over the coming years. Atanu Basu is CEO of AYATA, a software company headquartered in Austin, Texas. AYATA’s prescriptive analytics software focuses on improving oil and gas exploration and production. Basu is a member of INFORMS. A version of this article appeared in DataInformed. M A R C H / A P R I L 2 014 | 47