Relaciones y funciones
Entender los conceptos de Relación y de Función es de suma importancia en Matemática.
Para lograr esa comprensión es necesario adentrarnos en la noción de Correspondencia , ya que esta tiene un papel fundamental en las relaciones y funciones.
Lo primero es entender que Correspondencia es equivalente a Relación . En nuestra lengua, decir “en relación a”, es equivalente a decir “corresponde a”.
Ejemplos:
En una tienda comercial, cada artículo está relacionado con su precio; o sea, a cada artículo le corresponde un precio.
En la guía telefónica, cada cliente está relacionado con un número; o sea, a cada nombre de la guía le corresponde un número.
Definición matemática de Relación y de Función
En matemática, Relación es la correspondencia de un primer conjunto, llamado Dominio , con un segundo conjunto, llamado Recorrido o Rango , de manera que a cada elemento del Dominio le corresponde uno o más elementos del Recorrido o Rango.
Por su parte, una Función es una relación a la cual se añade la condición de que a cada valor del Dominio le corresponde uno y sólo un valor del Recorrido.
De las definiciones anteriores podemos deducir que todas las funciones son relaciones , pero no todas las relaciones son funciones.
También debemos agregar que toda ecuación es una Relación , pero no toda ecuación es una Función.
Todas las Relaciones pueden ser graficadas en el Plano Cartesiano
Dados dos conjuntos A y B una relación definida de A en B es un conjunto de parejas ordenadas ( par ordenado ) que hacen verdadera una proposición; dicho de otro modo, una relación es cualquier subconjunto del producto cartesiano A x B
Ejemplo 1.
Si A = {2, 3} y B = {1, 4, 5}, encontrar tres relaciones definidas de A en B.