число простое и «нет» в противном случае. Теория сложности вычислений рассматривает только массовые задачи, т.е. требование о бесконечности набора экземпляров задач обязательно.
Представление задачи - При рассмотрении вычислительных задач описанием экземпляра задачи является строка над алфавитом. Как правило, алфавит берется бинарным(т. е. множество {0,1}). Различные математические объекты должны быть соответствующим образом закодированы. Так, например, целые числа могут быть представлены в двоичной системе счисления, и графы могут быть закодированы непосредственно через их матрицы смежности или через их кодирование списков смежности в двоичной системе.