Virginia Tech Mechanical Engineering Annual Report Annual Report 2016 | Page 25

25 Nanostructured materials achieve unprecedented scalability Assistant Professor Xiaoyu “Rayne” Zheng has published a study in the journal Nature Materials that describes a new process to create lightweight, strong, and super-elastic 3-D printed metallic nanostructured materials with unprecedented scalability, a full seven orders of magnitude control of arbitrary 3-D architectures. These multiscale metallic materials have displayed super elasticity because of their designed hierarchical 3-D architectural arrangement and nanoscale hollow tubes, resulting in more than a 400 percent increase of tensile elasticity over conventional lightweight metals and ceramic foams. The approach, which produces multiple levels of 3-D hierarchical lattices with nanoscale features, could be useful anywhere there’s a need for a combination of stiffness, strength, low weight, and high flexibility — such as in structures to be deployed in space, flexible armors, lightweight vehicles, and batteries, opening the door for applications in aerospace, military, and automotive industries. Natural materials, such as trabecular bone and the toes of geckos, have evolved with multiple levels of 3-D architectures, spanning from the nanoscale to the macroscale. Human-made materials have yet to achieve this delicate control of structural features. The process Zheng and his collaborators use to create the material is an innovation in a digital light 3-D printing technique that overcomes current tradeoffs between high resolution and build volume, a major limitation in scalability of current 3-D printed microlattices and nanolattices.