The Leaf THE LEAF November-December 2017 | Page 10

Endocannabinoid System The cannabinoid CB1 receptor is the most important for psychoactive effects, but has a role in a number of therapeutic effects as well, particularly pain. THC is a potent partial agonist of CB1. However, the effect of CBD has been more difficult to determine. Originally CBD was considered to be a low- potency antagonist at CB1. However, in 2015, new results showed that CBD can also bind to an allosteric site on the CB1 receptor. At this site, CBD acts as a high potency (IC50=304 nM) negative allosteric modulator, which could reduce both the efficacy and potency of CB1 activation by THC. Cannabinoid CB2 receptor activation has many effects (too many to list here), although inflammation is an important one. Here are more details on roles of the CB2 receptor. Like with CB1, THC is a potent partial agonist at the CB2 receptor. CBD opposes activation by THC, since it is an antagonist/inverse agonist. However, it is not particularly potent. Besides direct actions on the cannabinoid receptors, Phytocannabinoids can modulate levels of endocannabinoids. In fact, treatment with CBD increased blood anandamide levels. This could be due to either inhibition of the anandamide-metabolizing enzyme or via inhibition of anandamide reuptake/transport. Fatty acid amide hydrolase (FAAH) is the enzyme that metabolizes anandamide. Although inhibition of FAAH by CBD is frequently cited for the increase in anandamide, it not a very potent inhibitor (IC50=15.2 μM). Another study saw very little inhibition of FAAH, even at very high concentrations, bringing into question whether this is how CBD raises anandamide levels. Fatty acid binding proteins (FABPs) are intracellular proteins that facilitate the removal of endocannabinoids by shuttling them from the cell membrane to the intracellular enzymes that break them down. Both THC and CBD bind multiple FABPs with Ki (binding affinity) values in the 1 to 3 μM range. THC and CBD can compete with anandamide for binding to the FABPs, which raises anandamide levels. This is the more likely mechanism of how Phytocannabinoids raise endocannabinoid levels. Atypical Cannabinoid Receptors GPR18 is a G protein-coupled receptor with effects on blood pressure and immune function. THC is a potent full agonist of GPR18 (EC50=960 nM). However, receptor activation is opposed by CBD, which potently inhibited THC-induced actions mediated through GPR18 (IC50=18 nM). GPR55activation lowers blood pressure, is anti-inflammatory, and can block some types of pain. GPR55 regulates energy intake and expenditure, which could impact diseases such as obesity and diabetes. It is also expressed in bone cells with a possible role in osteoporosis. GPR55 activation decreased neurodegeneration in models of multiple sclerosis. GPR55 is activated by THC under at least some experimental conditions. The potency of THC at GPR55 (EC50=8 nM) was nearly as low as for the CB1 receptor. CBD opposes the activation of GPR55 by acting as a fairly potent antagonist (IC50=445 nM). So far, I have not seen any studies of THC/CBD and the third atypical cannabinoid receptor, GPR119.