Test Drive | Page 77

64 BIOLOGÍA Problemas resueltos 5.1 Como se explicó en el capítulo 3, puede pensarse en la energía como la capacidad de realizar trabajo útil. Los sistemas vivos están muy ordenados y su alto grado de organización está sujeto a una decadencia que los conduce a la aleatoriedad, lo cual concuerda con la tendencia universal hacia el desorden (entropía). Sólo con la captura y el consumo de nuevas formas de energía ordenada, la cual sirve para construir sistemas vivos con un alto grado de orden, es posible resistir esa tendencia a la aleatoriedad. Para sostener la vida, la energía cinética del calor que sale del organismo debe ser reemplazada con la energía potencial de moléculas ordenadas presentes en los alimentos; por ejemplo, carbohidratos, proteínas y lípidos. Los sistemas vivos deben trabajar (gastar energía) para conservar la vida. 5.2 5.4 Si existe una tendencia universal hacia el desorden y la aleatoriedad, ¿cómo se explican el crecimiento, el desarrollo y la complejidad cada vez mayor de los seres vivos? La tendencia hacia la aleatoriedad sólo ocurre en un plano global. Dentro de los seres vivos, cualquier incremento en el orden de una parte está acoplado a una reducción en el orden de otra parte. Es decir, la aleatoriedad del sistema entero aumenta, pero una porción aislada de ese sistema acoplado exhibe mayor orden. En términos termodinámicos, las reacciones endergónicas (en las que se generan nuevos ¿Cuál es la función del ATP en las transformaciones energéticas que ocurren dentro de los seres vivos? Esta molécula tan universal en el mundo de la vida es algo así como una "moneda" energética, es decir, un medio de intercambio de energía que reduce la complejidad de los ciclos metabólicos dentro de la célula. De este modo, todos los mecanismos de liberación de la energía encerrada en los alimentos combustibles están encaminados a la formación de ATP a partir de precursores como el ADP. Del mismo modo, diversos procesos de consumo de energía, por ejemplo la contracción muscular y el transporte activo, utilizan ATP como fuente de energía y lo degradan a ADP. De vez en cuando, el ATP es sustituido por nucleótidos del mismo tipo (véase el Cap. 7); por ejemplo, citosintrifosfato (CTP) y guanoslntrifosfato (GTP). La energía de estos nucleótidos está almacenada en los dos últimos enlaces fosfatídicos de la molécula. Esos enlaces de alta energía suelen representarse con una tilde (~); por ejemplo, adenosín-P~P~P. Si la energía no se crea ni se destruye, ¿por qué necesitamos continuos aportes de energía nueva para mantenernos vivos? ¿Por qué no recelamos simplemente la energía que ya tenemos? En sentido estricto, las leyes de la termodinámica sólo son aplicables a sistemas cerrados; es decir, a sistemas herméticamente sellados que no están en contacto con el entorno. Los seres vivos —por ejemplo los seres humanos— son sistemas abiertos que intercambian materia y energía con su entorno y, por tanto, pierden constantemente sus reservas de ambos. De hecho, incluso estando aislados del medio seríamos presa de la segunda ley de la termodinámica, la cual afirma que en todas las transformaciones energéticas hay tendencia a un mayor desorden en la energía producida. Dado su menor potencial, las formas de energía desordenadas, por ejemplo, el calor que despiden los seres vivos, ya no pueden efectuar trabajo útil en circunstancias ordinarias. 5.3 patrones de ordenamiento) están acopladas con reacciones exergónicas (que reducen el orden) para permitir tipos específicos de síntesis. ¿Qué relación hay entre las leyes de la termodinámica y la naturaleza de los sistemas vivos? 5.5 ¿Qué es la glucólisis y cómo contribuye al bienes tar de la célula? Glucólisis significa literalmente "rompimiento o degradación de glucosa". Es un proceso que consta de una serie de aproximadamente nueve reacciones relacionadas, mediante las cuales la glucosa se degrada poco a poco a dos moléculas de un compuesto más simple: el ácido pirúvico. Este ácido puede convertirse anaeróbicamente en cualquiera d e varias formas reducidas; por ejemplo, ácido láctico o alcohol etílico. En condiciones aeróbicas puede ingresar en el ciclo de Krebs. Cada paso de la glucólisis es catalizado por una enzima específica. La proximidad entre esas enzimas permite que la glucólisis ocurra en forma de un proceso metabólico integrado al que se denomina vía. Todas las enzimas de la glucólisis son proteínas solubles que ya fueron aisladas y cristalizadas, de modo que los científicos saben mucho acerca de su estructura y su funcionamiento. La glucólisis se lleva a cabo en el citoplasma de las células y no dentro de un organelo específico. Las reacciones glucolíticas producen una rendimiento neto de dos moléculas de ATP disponibles para las actividades de la célula, + más dos moléculas de NAD reducido que, en última instancia, puede generar más ATP. En conclusión, la