Test Drive | Page 61

www.elsolucionario.net Electronica Básica para Ingenieros VDD=15 V R G1=1MΩ R G2=500kΩ vi R S=10kΩ R B1 vi vo R G2 R S RL CE RE R B2 Figura P2.7.b P2.8 Figura P2.6.a VCC VCC=12 V R B1 =160kΩ R B2 =90kΩ R E=3kΩ R S=600Ω vs VDD vo vi R G1 2N3906 RD vo vi + ~ Obtener la AV, Zi y Zo del amplificador MOS de la figura P2.8. Datos: k=33µA/V 2 , VT=1 V, W=20µm, L=4µm. R B1 CS RS 2N5457 VGS (off)≈-1.2V vo + ~ R G1 2N3904 CS RS vs VDD VCC R B2 R G2 VDD=10V R G1=25kΩ R G2=25kΩ R D=2kΩ Figura P2.b VCC=12 V RB1 =150kΩ RB2 =90kΩ RE=1kΩ RC =1kΩ RS =600Ω CE vi 2N3904 vo Figura P2.8 RC VCC is P2.9 RB1 RS RE RB2 CB Figura P2.6.c P2.7 VCC=5 V VBB=3 V IBB=100µA R E=1kΩ Calcular la AV, AI, Zi y Zo de los amplificadores basados en JFET de las figuras P2.7.a y P2.7.b. vi VDD VDD=–15 V R G1=10kΩ R G2=5kΩ vi R D=1kΩ R S=2.5kΩ VCC R G1 IBB VBB vo 2N5460 VGS (off)≈4.0 V Figura P2.7.a vo ~ + RD R G2 R S – 42 – Obtener el modelo equivalente en tensión del amplificador Darlington de la figura P2.9. Datos: para ambos transistores hFE=100, hie=3kΩ, hfe=250, hoe~0. Repetir el problema suponiendo que los transistores son BC547A. CS RE Figura P2.9 P2.10 Calcular la AV, AVS, AI, AIS, Zi y Zo del amplificador multietapa de la figura 2.10. Datos: hie=2kΩ, hfe=250, hre~0, hoe~0. Repetir el problema con hoe=1/40kΩ. I.S.B.N.: 84-607-1933-2 Depósito Legal: SA-138-2001 www.elsolucionario.net VCC=12 V R B1 =100kΩ R B2 =180kΩ R E=3.5kΩ R L=10kΩ R S=600Ω