www.elsolucionario.net
Electronica Básica para Ingenieros
VDD=15 V
R G1=1MΩ
R G2=500kΩ
vi
R S=10kΩ
R B1
vi
vo
R G2 R S
RL
CE
RE
R B2
Figura P2.7.b
P2.8
Figura P2.6.a
VCC
VCC=12 V
R B1 =160kΩ
R B2 =90kΩ
R E=3kΩ
R S=600Ω
vs
VDD
vo
vi
R G1
2N3906
RD
vo
vi
+
~
Obtener la AV, Zi y Zo del amplificador MOS
de la figura P2.8. Datos: k=33µA/V 2 , VT=1 V,
W=20µm, L=4µm.
R B1
CS
RS
2N5457
VGS (off)≈-1.2V
vo
+
~
R G1
2N3904
CS
RS
vs
VDD
VCC
R B2
R G2
VDD=10V
R G1=25kΩ
R G2=25kΩ
R D=2kΩ
Figura P2.b
VCC=12 V
RB1 =150kΩ
RB2 =90kΩ
RE=1kΩ
RC =1kΩ
RS =600Ω
CE
vi
2N3904
vo
Figura P2.8
RC
VCC
is
P2.9
RB1
RS
RE
RB2
CB
Figura P2.6.c
P2.7
VCC=5 V
VBB=3 V
IBB=100µA
R E=1kΩ
Calcular la AV, AI, Zi y Zo de los
amplificadores basados en JFET de las figuras
P2.7.a y P2.7.b.
vi
VDD
VDD=–15 V
R G1=10kΩ
R G2=5kΩ
vi
R D=1kΩ
R S=2.5kΩ
VCC
R G1
IBB
VBB
vo
2N5460
VGS (off)≈4.0 V
Figura P2.7.a
vo
~
+
RD
R G2 R S
– 42 –
Obtener el modelo equivalente en tensión del
amplificador Darlington de la figura P2.9.
Datos: para ambos transistores hFE=100,
hie=3kΩ, hfe=250, hoe~0. Repetir el problema
suponiendo que los transistores son BC547A.
CS
RE
Figura P2.9
P2.10
Calcular la AV, AVS, AI, AIS, Zi y Zo del
amplificador multietapa de la figura 2.10.
Datos: hie=2kΩ, hfe=250, hre~0, hoe~0. Repetir
el problema con hoe=1/40kΩ.
I.S.B.N.: 84-607-1933-2 Depósito Legal: SA-138-2001
www.elsolucionario.net
VCC=12 V
R B1 =100kΩ
R B2 =180kΩ
R E=3.5kΩ
R L=10kΩ
R S=600Ω