Test Drive | Page 125

www.elsolucionario.net Tema 6 Por otra parte, la tensión ve se puede expresar como v e = (i b1 + h fe i b1 + i b 2 + h fe i b 2 )R E (6.16) RC RC voc vic + vic ib1 + ~ Q1 hie voc hfeib1 ~ 2RE Figura 6.6. 2RE a) b) Circuitos equivalente del amplificador diferencial en modo común a) en alterna, b ) en pequeña señal (hoe=hre=0). Z e1 = Z e 2 = 2 R E (6.17) Luego, los emisores de Q1 y Q2 “ven” una resistencia equivalente expresada en 6.17 de forma que el circuito de la figura 6.5 se transforma en los circuitos equivalentes más sencillos mostrados en la figuras 6.6.a y 6.6.b. Fácilmente se demuestra que la ganancia en modo común es v v h fe R C A c = o1 = oc = − v ic v ic h ie + 2 R E (1 + h fe ) (6.18) • Relación de rechazo en modo común Un amplificador diferencial ideal tiene una tensión de salida proporcional a vid y no depende de la componente en modo común (Ac=0). En la práctica no sucede así y para medir esa desviación se introduce el concepto de relación de rechazo en modo común RRMC; en inglés common-mode rejection ratio o CMRR. Se define la RRMC como la relación entre la ganancia en modo diferencial y modo común RRMC = Ad Ac (6.19) que a veces se expresa en decibelios como A  RRMC (dB) = 20 log10  d   Ac  (6.20) 6.3.- Amplificador diferencial bipolar con fuente de corriente En la etapa diferencial anterior una RRMC muy elevada exige una RE grande; en el caso ideal RRMC→∞ si I.S.B.N.:84-607-1933-2 Depósito Legal:SA-138-2001 – 105 – www.elsolucionario.net y utilizando las ecuaciones 6.13, 6.14 y 6.15 fácilmente se demuestra que