Test Drive | Page 19

advanced solar electric propulsion (SEP) for interplanetary cargo transportation to in-space operations and deep-space habitation. New missions and activities will become possible as NASA and its partners validate capabilities, address Proving Ground objectives, and review the specific series of near-term missions. Through these missions, we are moving toward Earth Independence and progressing together on the journey to Mars. A Robust Transportation Infrastructure: Ground Operations, Orion, and SLS NASA is developing a robust launch services capability, which not only supports SLS and Orion, but can also be leveraged by a multitude of new commercial launch providers. With commercial partners, the agency is modernizing Launch Complex 39B, developing a mobile launcher, upgrading control systems, and demonstrating ground processing capabilities to enable Proving Ground missions, including the launch of SLS and Orion. Orion is a launch, reentry, and in-space crew spacecraft designed to transport a crew of four to deep space. During Proving Ground missions, Orion will protect the crew during transport to cislunar space, sustain the crew for short durations while in space, and enable safe reentry. For future missions, Orion will provide transportation between Earth and the Mars transit systems located in cislunar space. Orion’s first mission, Exploration Flight Test 1 (EFT-1), was successfully conducted in 2014, on a Delta IV Heavy launch vehicle, and generated a wealth of data to enable future human missions to deep space. The Space Launch System is Orion’s ride to deep space. NASA is developing an evolvable design for SLS that leverages previous launch system investments. The initial “Block 1” SLS is designed to carry Orion, as well as cargo, equipment, and science experiments to staging points in cislunar space. We are well along the path to developing the Block 1 SLS, which uses an upper stage derived from the Delta cryogenic second stage to launch 70 metric tons (mt) to orbit. This initial version will use liquid hydrogen and liquid oxygen propulsion systems and solid rocket boosters, evolved from heritage systems. NASA plans to upgrade the boosters and develop an advanced upper stage, the Exploration Upper Stage (EUS), leading to the 105 mt Block 1B and the 130 mt Block 2 versions of the SLS. This payload capacity far exceeds the capability of current and planned commercial launch vehicles. Development of Block 1B with the EUS provides significant additional capability for Proving Ground missions, allowing NASA to send the crewed Orion