Surface World May 2020 Surface World May 2020 | Page 53

TESTING & MEASUREMENT Instrument Set Up Most XRF instruments on the market today belong to two distinct categories: energy-dispersive (ED) and wavelength-dispersive (WD) XRF. Within these categories exist numerous configurations of XRF instrument with differing X-ray sources, detectors, optics and chamber/system orientations. To give an overview of the topic both ED-XRF and WD-XRF will be explored though ED-XRF will be the focus of this article. WD-XRF First, WD-XRF systems operate on Bragg’s Law (Equation 1), which states: When an X-ray meets the surface of a crystal at an incident angle (θ), it will also be reflected at the same angle (θ) off the crystal surface. And, when the path difference (d) is a whole number (n) of the wavelength, only then would constructive interference occur between the scattered X-ray beams (Bragg & Bragg, 1914). The law can be summarised as: Equation 1: Bragg’s Law equation. Λ is the wavelength of the X-ray, d is the spacing of the crystal layers (path difference), θ is the incident angle (angle between the incident ray and the scattered plane and n is an integer. The schematic diagram below shows the layout of a typical WD-XRF instrument (Figure 3). In principle WD-XRF instruments require an X-ray generator, filter, sample stage, collimator, crystal and detector. The function of many components is similar in ED-XRF and WD-XRF instruments, as such in this section only the different components will be mentioned while the common components will be discussed in the ED-XRF section. The type of detector used in WD-XRF instruments may be of the proportional counter variety or silicon-based detectors for light elements up to iron (Fe), while scintillation type detectors may be used for heavier elements; the main difference between the ED-XRF and WD-XRF system detectors is that the WD-XRF detectors only analyse single wavelengths directed from the crystal, while ED-XRF detectors analyse the whole spectrum of energies from the sample. ED-XRF instruments use proportional counter type detectors or silicon-based detectors and will be discussed further below. Figure 3: Schematic diagram of a typical WD-XRF instrument. X-rays first pass through a primary filter and excite the electrons in the sample. The secondary X-rays pass through a collimator before reaching the crystal which selectively (according to Bragg’s Law) sends signals to the detector. The other major component that is different between the two types of XRF instrument is the crystal that is used in WD-XRF to selectively present the detector with wavelengths emerging from the sample. It is of note that two types of crystal/detector orientations can be used to detect signals. The first is a fixed crystal/detector geometry, where the signal is presented to crystals on a rotating turret. Each crystal in the turret can reflect a number of specific wavelengths to the detector. Although this set-up is designed for speed it is usually limited in the number of wavelengths it can transmit. The second set-up involves mounting the detector on a goniometer which allows it to rotate around the crystal to interrogate each wavelength sequentially by modifying the incidence angle between the crystal and the detector. This however makes instruments with this set-up quite slow in analysing a sample. ED-XRF For ED-XRF instruments the orientation is quite straight forward as the schematic diagram below shows (Figure 4). The primary radiation used to elicit a signal from the sample is generated in an XRF generator. X-ray Generator XRF generators are normally designed as a glass chamber housing the cathode and the target material, from which the X-rays will be generated, as the anode. Typically, tungsten is used as the target material as it offers sufficient excitation across a wide range of wavelengths, but specialist anodes can also be used to elicit excitation at specific wavelengths. These may include chromium, gold, silver, aluminium, molybdenum or even rhodium. The glass chamber is mounted in an oil-filled shield to prevent escape of ionising radiation, to dissipate the heat generated inside and to maintain stable temperatures even under heavy use, thus prolonging instrument longevity. The X-ray required to excite the sample are directed out through a window usually made from beryllium. ED-XRF instruments usually require between 10 and 50kV to generate the primary X-ray beam. Primary Filters Figure 4: Schematic diagram of a typical ED-XRF instrument setup. X-rays generated in the X-ray generator pass through a primary filter and a mirror providing an optical image, through a collimator and onto the sample. The fluorescence signal emitted by the sample is detected by the detector which is positioned at a critical angle to the primary excitation beam. The primary X-ray beam first passes through a primary filter, which modifies the beam to maximise the signal to noise ratio. Filters of nickel, aluminium and molybdenum are typically used in XRF but copper or titanium filters at varying thicknesses can also be used for specialist applications. As an example, aluminium filters are used in trace analysis of heavy metals, as they subdue background noise over which the trace amounts of heavy metals may not be detected. CONTINUED ON PAGE 52 read online: www.surfaceworld.com MAY 2020 51