PHOTOCHEMISTRY
‣ • Photodynamic therapies in cancer treatment 7
• C-terminal differentiation for bulk and single molecule proteomics 8
• Site-selective tyrosine bioconjugation for nativeto-bioorthogonal protein transformation 9
• Photocatalysed proximity labelling in a cellular environment under red light 10 The MacMillan group has expanded the applicability and potential of iridium photocatalysis through Dexter energy transfer for carbene generation , and subsequent insertion for protein mapping in cellular microenvironment . 11 science , water treatment , polymer and solar cell industries . There is a huge opportunity available in integrating photochemistry and electrochemistry . Both are regarded as ‘ green ’ technologies and participate in oxidative and reductive cycles . Electrophotochemistry , a concept envisioned by Moutet and Reverdy and demonstrated by Rusling , needs expansion to broaden the scope of reaction paradigm to solve daunting synthetic problems . 12 , 13 Recent reports by Stahl and Wang in merging photochemistry and electrochemistry are positive step in this direction and will expand the scope of photoredox catalysis . 14 waste management efforts . The use of solar energy to drive chemical transformations could be a huge breakthrough in pharmaceutical , agro and fine chemical industries for sustainability and cost-efficiency , making it a perfect partner in greener chemistry . More investigation and exploration are required to emulate the functioning of plant leaves , an enormous ubiquitous photoreactor in nature . •
Dr Somesh Sharma
Integration of electrophotochemistry
Other businesses getting benefits from this technology are the material
|
A futuristic technology
The increase utility of photoredox catalysis will augment energy conservation , atom economy and
|
J j |
SENIOR VICE PRESIDENT & HEAD , DISCOVERY CHEMISTRY SOLUTIONS
ARAGEN LIFE SCIENCES PVT LTD .
somesh . sharma @ aragen . com www . aragen . com
|
References
1 : Nicewicz et al ., Chem . Rev ., 2016 , 116 ( 17 ), 10075-10166
2 : MacMillan et al ., Science , 2008 , 322 ( 5898 ), 77-80
3 : Yoon et al ., J . Am . Chem . Soc ., 2008 , 130 ( 39 ), 12886-122887
4 : Stephenson et al ., J . Am . Chem . Soc ., 2009 , 131 ( 25 ), 8756-8757
5 : Sanford et al ., J . Am . Chem . Soc ., 2011 , 133 ( 46 ), 18566-18569 ; Pirnot et al ., Science , 2013 , 339 ( 6127 ), 1593-1596 ; Doyle et al ., J . Am . Chem . Soc ., 2018 , 140 ( 43 ), 14059-14063 ; MacMillan et al ., Nature , 2018 , 560 , 70-75
6 : Bonnet et al ., J . Am . Chem . Soc ., 2019 , 141 ( 46 ), 18444-18454
7 : Samantaray et al ., ChemBioChem ., 2021 , 22 ( 23 ), 3270-3272
8 : Anslyn et al ., ACS Chem . Biol ., 2021 , 16 ( 11 ), 2595-2603
9 : MacMillan et al ., Nature Chemistry , 2021 , 13 , 902-908
10 : Tay et al ., ChemRxiv , 2021
11 : MacMillan et al ., Science , 2020 , 367 ( 6482 ), 1091-1097
12 : Moutet & Roverdy , Tet . Lett ., 1979 , 20 ( 26 ), 2389-2392
13 : Rusling & Shukla , J . Phys . Chem ., 1985 , 89 ( 15 ), 3353-3358
14 : Stahl & Wang , Angew . Chem . Int . Ed ., 2019 , 58 ( 19 ), 6385-6390
62