Speciality Chemicals Magazine JAN / FEB 2021 | Page 47

PEPTIDES & PROTEINS

Therapeutics is developing these peptides as standalone therapeutics or as a potential targeting platform . 23 Similar to this technology , the Pentelute laboratory has been also exploiting macrocylisation with thioether chemistry through reactions of Cys residues with perfluoroarene . The resulting peptides are stabilised and have enhanced cell-penetrating properties for delivery across the blood-brain barrier . 24 Recently , they have made bicyclic perfluoroarylpeptides containing cell penetrating motifs for the delivery of antisense oligonucleotides . 25 Another company developing macrocyclic peptides for therapeutic indications is Peptidream , located in Japan . This company , which was co-founded by Dr Hiroaki Suga , has licensed technology developed by him at the University of Tokyo is using flexisyme technology for loading tRNAs with novel amino acids . 26 These are used in their proprietary peptide discovery translation system coupled with macrocyclisation and modification to develop peptide leads rapidly . A recent review from the Suga lab summarises many of these
Figure 3 – Balixafortide constraints
techniques . 27 Peptidream uses many constraint technologies to develop peptides for large pharmaceutical partners , including Novartis , Merck , GSK , Shionogi and many others .
Conclusions
Hopefully , this mini-review will provide those interested in the developing area of therapeutic macrocyclic peptides with a good starting point to gain some perspective . It is by no means a comprehensive summary of the field , however . An excellent current review of this topic from Jing and Jin can provide a much deeper dive into this technology . 28
References
1 : J . L . Lau & M . K . Dunn , Bioorg . Med . Chem . 2018 , 26 ( 10 ), 2700-2707
2 : C . Mas-Moruno et al ., Cancer Agents in Med . Chem . 2010 , 10 , 753-768
3 : D . J . Craik & J . Du , Curr . Opin . Chem . Biol . 2017 , 38 , 8 – 16
4 : G . W . Grueber & C . Gruendemann , USP 2014 0369930A1
5 : J . W . Taylor , Biopolymers 2002 , 66 ( 1 ), 49-75
6 : J . F . Howard et al ., JAMA Neurol . 2020
7 : S . J . DeMarco et al ., Bioorg . Med . Chem ., 2006 , 14 ( 24 ), 8396 – 8404
8 : J . Cortez , et al ., Oncotarget , 2018 , 9 ( 71 )
9 : C . E . Schafmeister et al ., J . Am . Chem . Soc . 2000 , 122 , 5891 – 5892
15 : H . C . Kolb et al ., Angew . Chem . Int . Ed . Engl . 2001 , 40 , 2004 – 2021
16 : C . W . Tornoe et al ., J . Org . Chem . 2002 , 67 , 3057 – 3064
17 : J . E . Moses et al ., Chem . Soc . Rev . 2007 , 36,1249 – 62
18 : M . Scrima et al ., European J . Org . Chem . 2010 , 446 – 57
19 : K . Holland-Nell & M . Meldal , Angew . Chem . Int . Ed . Engl . 2011 , 50 , 5204 – 5206
20 : S . Ji et al ., Mol . Pharm . 2013 , 10 ( 9 ), 3304 – 3314
21 : F . M . Brunel & P . E . Dawson , Chem . Commun . 2005 , 2552 – 4
22 : F . M . Brunel et al ., J . Virol . 2006 , 80 , 1680-1687
23 : M . Eder et al ., Cancer Res . 2019
10 : S . Chhabra et al ., J . Med . Chem . 2014 , 57 ( 23 ), 9933-9944
24 : C . M . Fadzen et al ., J . Amer . Chem . Soc . 2017 , 139 , 15628-15631
11 : L . D . Walensky & G . H . Bird , J . Med . Chem . 2014 , 57 , 15 , 6275-6288
25 : J . M . Wolfe et al ., Angew . Chemie Int . Ed . 2018 , 57 , 4756-4759
12 : A . N . Whelan et al ., Tetrahedron Lett . 2004 , 45 ( 52 ), 9545 – 9547
26 : R . Takatsuji , et al ., J . Am . Chem . Soc . 2019 , 141 , 2279-2287
13 : J . Burnley et al ., J . Org . Chem . 2015 , 80 ( 18 ), 9057 – 9063
27 : A . A . Vinogradov et al ., J . Am . Chem . Soc . 2014 , 141 , 4167-4181
14 : Carvajal et al ., Sci . Transl . Med . 2018 , 10 ( 436 )
28 : X . Jing & K . Jin , Med . Res . Rev . 2019 , 1-5
Dr Michael W . Pennington
CHIEF SCIENTIFIC OFFICER
Figure 4 – Bicyclic peptide thioether on a mesitylene scaffold following displacement of bromine
AMBIOPHARM INC . k + 1 803 44 7590 x 226 J mike . pennington @ ambiopharm . com j www . ambiopharm . com
JAN / FEB 2021 SPECCHEMONLINE . COM
47