Sciencewood Ramesh Kumar P | Page 43

Pg.no. 43 Figure 13.2 (Structure of Vascular Tissue) As you can see, the vascular bundles in dicots are much larger and more consistently arranged. Monocot species, on the other hand, spread the xylem and phloem of the vascular tissue around throughout the stem. These two methods reflect the structure of the plants themselves. Monocots tend to be plants like grasses, which have veins and leaves which run in parallel. In dicots, such as many flowering trees and fruiting plants, the leaves and veins in the leaves branch off in various patterns. This organization favors a vascular tissue which is more organized, and can branch as the plant grows. In woody dicots, the vascular tissue is even more organized, with a vascular cambium layer producing xylem on the inside and phloem on the outside. These layers are produced seasonally, which give woody plants their characteristic “rings”. By adding to the vascular tissue every season, these plants can handle an increase in growth and become very large. Some monocots such as palms have adopted a secondary growth technique while maintaining a scattered arrangement of vascular tissue. Functions of Vascular Tissue Vascular tissue functions mainly in maintaining the water balance and sugar balance of a plant. Not only does the plant’s cell need water to complete basic biological functions, they also need the minerals and nutrients found in the soil to complete their work. Most plants have small pores in the leaves called stoma , which allow water to evaporate and gases to exchange. To get more water and nutrients into the cells of leaves, these small pores open. As the water evaporates, the forces of adhesion and cohesion pull the water up the tubes of the xylem. As water is absorbed through the roots, this also creates a pressure from the bottom to force the water upward. The tubes of the xylem are narrow to support this action, but there are many of them bundled together. The xylem portion of the vascular tissue can be seen below, on the left. As the water moves up and into the leaves, some of it is needed to dissolve the sugars created by photosynthesis and carry them back down the plant. Remember that photosynthesis creates glucose, which the plant will use as energy. The plant combines glucose molecules to create sucrose, a temporary storage sugar. The root cells, and other cells in the stems and leaves, do not create their own glucose and rely on the plant to provide them energy. The phloem cells work to transport this created energy all throughout the plant from source cells ,