RocketSTEM Issue #9 - October 2014 | Page 33

The Rosetta orbiter Credit: ESA/ATG medialab Rosetta resembles a large black box. The scientific instruments are mounted on the top of the box (the payload support module), while the subsystems are on the ‘base’ (bus support module). On one side of the orbiter is the steerable 2.2 m-diameter communications dish, while the lander is attached to the opposite face. Two enormous solar wings extend from the other sides. Both panels can be rotated through ±180°. The orbiter’s scientific payload includes 11 experiments, in addition to the lander. Scientific consortia from institutes across Europe and the United States provided these state-of-the-art instruments. Ultraviolet Imaging Spectrometer - ALICE will analyse gases in the coma and tail and measure the comet’s production rates of water and carbon monoxide and dioxide. It will provide information on the surface composition of the nucleus. Comet Nucleus Sounding Experiment - CONSERT will probe the comet’s interior by studying radio waves reflected and scattered by the nucleus. Cometary Secondary Ion Mass Analyser - COSIMA will analyse the characteristics of dust grains emitted by the comet, such as their composition and whether they are organic or inorganic. Grain Impact Analyser and Dust Accumulator – GIADA will measure the number, mass, momentum and velocity distribution of dust grains coming from the cometary nucleus and other directions (deflected by solar radiation pressure). Micro-Imaging Dust Analysis System - MIDAS will study the dust around the comet. It will provide information on particle population, size, volume and shape. Microwave Instrument for the Rosetta Orbiter - MIRO will determine the abundances of major gases, the surface outgassing rate and the nucleus subsurface temperature. Optical, Spectrocopic and Infrared Remote Imaging System - OSIRIS has a wide-angle camera and narrow-angle camera that can obtain highresolution images of the comet’s nucleus. Rosetta Orbiter Spectrometer for Ion and Neutral Analysis - ROSINA will determine the composition of the comet’s atmosphere and ionosphere, the velocities of electrified g as particles and reactions in which they take part. Rosetta Plasma Consortium - RPC will measure the physical properties of the nucleus, examine the structure of the inner coma, monitor cometary activity, and study the comet’s interaction with the solar wind. Radio Science Investigation - RSI will, by using shifts in the spacecraft’s radio signals, measure the mass, density and gravity of the nucleus, define the comet’s orbit, and study the inner coma. Visible and Infrared Mapping Spectrometer - VIRTIS will map and study the nature of the solids and the temperature on the surface. It will also identify comet gases, characterise the physical conditions of the coma and help to identify the best landing sites. 31 www.RocketSTEM .org 31