RocketSTEM Issue #7 - May 2014 | Page 48

NASA testing supersonic parachute By Brenden Clark Force equals mass times acceleration – or in the case of NASA and JPL planning for a landing on Mars – deceleration. JPL is currently in the testing phase of the LDSD (Low-Density Supersonic Decelerator) for future, larger load trips to the Red Planet. The current limit of parachute and deceleration technology has been reached with the most recent rover programs, Curiosity being the largest at about the size of a small SUV. For the future, we need to be able to land much larger objects on Mars safely so that we can build habitats for options is a small step, only increasing the payload from the current 1.5 metric tons to 2-3 metric tons. But considering the current deceleration system is the same one we’ve been using since the Viking days forty years ago, it’s time for an upgrade. The larger the mass, the greater the force needed to slow it down. The engine of that force is friction or “atmospheric drag”. While Mar’s atmosphere is much thinner than our own, it does exist. And so JPL is working on much larger parachutes. The larger the parachute, the more surface area to create more friction and deceleration. It seems like such a simple thing; just build a bigger parachute. Well, sadly, it’s not. The parachutes JPL needs to build and test are too big for wind tunnels and so they have to work out inventive and complex ways to test the new chutes and make over a kilometer above the ground via helicopter, releasing the parachute where a rocket sled explodes to life, pulling the parachute back down to ground at great speed and force. But the parachute test is only half of the LDSD program. aerodynamic decelerators. Basically a large ballon structure a donut ring or inner-tube that increases the surface area of to slow the payload down from Mach 3-4, down to Mach 2 when the parachute deploys, further slowing the vehicle down to subsonic speeds. The two stages together will be tested next month in Hawaii and if every everything goes well, there are hopes that they will be ready for missions starting in 2018. Click the link to watch video of the test: www.youtube.com/watch?v=9h1NtQJ59kM. 46 46 www.RocketSTEM .org